Results 1  10
of
143
Fully homomorphic encryption using ideal lattices
 In Proc. STOC
, 2009
"... We propose a fully homomorphic encryption scheme – i.e., a scheme that allows one to evaluate circuits over encrypted data without being able to decrypt. Our solution comes in three steps. First, we provide a general result – that, to construct an encryption scheme that permits evaluation of arbitra ..."
Abstract

Cited by 663 (17 self)
 Add to MetaCart
(Show Context)
We propose a fully homomorphic encryption scheme – i.e., a scheme that allows one to evaluate circuits over encrypted data without being able to decrypt. Our solution comes in three steps. First, we provide a general result – that, to construct an encryption scheme that permits evaluation of arbitrary circuits, it suffices to construct an encryption scheme that can evaluate (slightly augmented versions of) its own decryption circuit; we call a scheme that can evaluate its (augmented) decryption circuit bootstrappable. Next, we describe a public key encryption scheme using ideal lattices that is almost bootstrappable. Latticebased cryptosystems typically have decryption algorithms with low circuit complexity, often dominated by an inner product computation that is in NC1. Also, ideal lattices provide both additive and multiplicative homomorphisms (modulo a publickey ideal in a polynomial ring that is represented as a lattice), as needed to evaluate general circuits. Unfortunately, our initial scheme is not quite bootstrappable – i.e., the depth that the scheme can correctly evaluate can be logarithmic in the lattice dimension, just like the depth of the decryption circuit, but the latter is greater than the former. In the final step, we show how to modify the scheme to reduce the depth of the decryption circuit, and thereby obtain a bootstrappable encryption scheme, without reducing the depth that the scheme can evaluate. Abstractly, we accomplish this by enabling the encrypter to start the decryption process, leaving less work for the decrypter, much like the server leaves less work for the decrypter in a serveraided cryptosystem.
Trapdoors for Hard Lattices and New Cryptographic Constructions
, 2007
"... We show how to construct a variety of “trapdoor ” cryptographic tools assuming the worstcase hardness of standard lattice problems (such as approximating the shortest nonzero vector to within small factors). The applications include trapdoor functions with preimage sampling, simple and efficient “ha ..."
Abstract

Cited by 191 (26 self)
 Add to MetaCart
We show how to construct a variety of “trapdoor ” cryptographic tools assuming the worstcase hardness of standard lattice problems (such as approximating the shortest nonzero vector to within small factors). The applications include trapdoor functions with preimage sampling, simple and efficient “hashandsign ” digital signature schemes, universally composable oblivious transfer, and identitybased encryption. A core technical component of our constructions is an efficient algorithm that, given a basis of an arbitrary lattice, samples lattice points from a Gaussianlike probability distribution whose standard deviation is essentially the length of the longest vector in the basis. In particular, the crucial security property is that the output distribution of the algorithm is oblivious to the particular geometry of the given basis. ∗ Supported by the Herbert Kunzel Stanford Graduate Fellowship. † This material is based upon work supported by the National Science Foundation under Grants CNS0716786 and CNS0749931. Any opinions, findings, and conclusions or recommedations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. ‡ The majority of this work was performed while at SRI International. 1 1
Lossy Trapdoor Functions and Their Applications
, 2007
"... We propose a new general primitive called lossy trapdoor functions (lossy TDFs), and realize it under a variety of different number theoretic assumptions, including hardness of the decisional DiffieHellman (DDH) problem and the worstcase hardness of lattice problems. Using lossy TDFs, we develop a ..."
Abstract

Cited by 126 (21 self)
 Add to MetaCart
We propose a new general primitive called lossy trapdoor functions (lossy TDFs), and realize it under a variety of different number theoretic assumptions, including hardness of the decisional DiffieHellman (DDH) problem and the worstcase hardness of lattice problems. Using lossy TDFs, we develop a new approach for constructing several important cryptographic primitives, including (injective) trapdoor functions, collisionresistant hash functions, oblivious transfer, and chosen ciphertextsecure cryptosystems. All of the constructions are simple, efficient, and blackbox. These results resolve some longstanding open problems in cryptography. They give the first known injective trapdoor functions based on problems not directly related to integer factorization, and provide the first known CCAsecure cryptosystem based solely on the worstcase complexity of lattice problems.
Generalized compact knapsacks, cyclic lattices, and efficient oneway functions
 In STOC
, 2007
"... We investigate the averagecase complexity of a generalization of the compact knapsack problem to arbitrary rings: given m (random) ring elements a1,..., am ∈ R and a (random) target value b ∈ R, find coefficients x1,..., xm ∈ S (where S is an appropriately chosen subset of R) such that P ai · xi = ..."
Abstract

Cited by 70 (9 self)
 Add to MetaCart
We investigate the averagecase complexity of a generalization of the compact knapsack problem to arbitrary rings: given m (random) ring elements a1,..., am ∈ R and a (random) target value b ∈ R, find coefficients x1,..., xm ∈ S (where S is an appropriately chosen subset of R) such that P ai · xi = b. We consider compact versions of the generalized knapsack where the set S is large and the number of weights m is small. Most variants of this problem considered in the past (e.g., when R = Z is the ring of the integers) can be easily solved in polynomial time even in the worst case. We propose a new choice of the ring R and subset S that yields generalized compact knapsacks that are seemingly very hard to solve on the average, even for very small values of m. Namely, we prove that for any unbounded function m = ω(1) with arbitrarily slow growth rate, solving our generalized compact knapsack problems on the average is at least as hard as the worstcase instance of various approximation problems over cyclic lattices. Specific worstcase lattice problems considered in this paper are the shortest independent vector problem SIVP and the guaranteed distance decoding problem GDD (a variant of the closest vector problem, CVP) for approximation factors n 1+ǫ almost linear in the dimension of the lattice. Our results yield very efficient and provably secure oneway functions (based on worstcase complexity assumptions) with key size and time complexity almost linear in the security parameter n. Previous constructions with similar security guarantees required quadratic key size and computation time. Our results can also be formulated as a connection between the worstcase and averagecase complexity of various lattice problems over cyclic and quasicyclic lattices.
Efficient collisionresistant hashing from worstcase assumptions on cyclic lattices
 In TCC
, 2006
"... Abstract The generalized knapsack function is defined as fa(x) = Pi ai * xi, where a = (a1,..., am)consists of m elements from some ring R, and x = (x1,..., xm) consists of m coefficients froma specified subset S ` R. Micciancio (FOCS 2002) proposed a specific choice of the ring R andsubset S for w ..."
Abstract

Cited by 61 (16 self)
 Add to MetaCart
(Show Context)
Abstract The generalized knapsack function is defined as fa(x) = Pi ai * xi, where a = (a1,..., am)consists of m elements from some ring R, and x = (x1,..., xm) consists of m coefficients froma specified subset S ` R. Micciancio (FOCS 2002) proposed a specific choice of the ring R andsubset S for which inverting this function (for random a, x) is at least as hard as solving certainworstcase problems on cyclic lattices. We show that for a different choice of S ae R, the generalized knapsack function is in factcollisionresistant, assuming it is infeasible to approximate the shortest vector in ndimensionalcyclic lattices up to factors ~ O(n). For slightly larger factors, we even get collisionresistancefor any m> = 2. This yields very efficient collisionresistant hash functions having key size andtime complexity almost linear in the security parameter n. We also show that altering S isnecessary, in the sense that Micciancio's original function is not collisionresistant (nor even universal oneway).Our results exploit an intimate connection between the linear algebra of ndimensional cycliclattices and the ring Z [ ff]/(ffn 1), and crucially depend on the factorization of ffn 1 intoirreducible cyclotomic polynomials. We also establish a new bound on the discrete Gaussian distribution over general lattices, employing techniques introduced by Micciancio and Regev(FOCS 2004) and also used by Micciancio in his study of compact knapsacks. 1 Introduction A function family {fa}a2A is said to be collisionresistant if given a uniformly chosen a 2 A, it is infeasible to find elements x1 6 = x2 so that fa(x1) = fa(x2). Collisionresistant hash functions are one of the most widelyemployed cryptographic primitives. Their applications include integrity checking, user and message authentication, commitment protocols, and more. Many of the applications of collisionresistant hashing tend to invoke the hash function only a small number of times. Thus, the efficiency of the function has a direct effect on the efficiency of the application that uses it. This is in contrast to primitives such as oneway functions, which typically must be invoked many times in their applications (at least when used in a blackbox way) [9].
Statistical zeroknowledge proofs with efficient provers: Lattice problems and more
 In CRYPTO
, 2003
"... Abstract. We construct several new statistical zeroknowledge proofs with efficient provers, i.e. ones where the prover strategy runs in probabilistic polynomial time given an NP witness for the input string. Our first proof systems are for approximate versions of the Shortest Vector Problem (SVP) a ..."
Abstract

Cited by 50 (10 self)
 Add to MetaCart
(Show Context)
Abstract. We construct several new statistical zeroknowledge proofs with efficient provers, i.e. ones where the prover strategy runs in probabilistic polynomial time given an NP witness for the input string. Our first proof systems are for approximate versions of the Shortest Vector Problem (SVP) and Closest Vector Problem (CVP), where the witness is simply a short vector in the lattice or a lattice vector close to the target, respectively. Our proof systems are in fact proofs of knowledge, and as a result, we immediately obtain efficient latticebased identification schemes which can be implemented with arbitrary families of lattices in which the approximate SVP or CVP are hard. We then turn to the general question of whether all problems in SZK ∩ NP admit statistical zeroknowledge proofs with efficient provers. Towards this end, we give a statistical zeroknowledge proof system with an efficient prover for a natural restriction of Statistical Difference, a complete problem for SZK. We also suggest a plausible approach to resolving the general question in the positive. 1
Making NTRU as secure as worstcase problems over ideal lattices
 In Proc. of EUROCRYPT, volume 6632 of LNCS
, 2011
"... Abstract. NTRUEncrypt, proposed in 1996 by Ho stein, Pipher and Silverman, is the fastest known latticebased encryption scheme. Its moderate keysizes, excellent asymptotic performance and conjectured resistance to quantum computers could make it a desirable alternative to factorisation and discret ..."
Abstract

Cited by 46 (5 self)
 Add to MetaCart
(Show Context)
Abstract. NTRUEncrypt, proposed in 1996 by Ho stein, Pipher and Silverman, is the fastest known latticebased encryption scheme. Its moderate keysizes, excellent asymptotic performance and conjectured resistance to quantum computers could make it a desirable alternative to factorisation and discretelog based encryption schemes. However, since its introduction, doubts have regularly arisen on its security. In the present work, we show how to modify NTRUEncrypt to make it provably secure in the standard model, under the assumed quantum hardness of standard worstcase lattice problems, restricted to a family of lattices related to some cyclotomic elds. Our main contribution is to show that if the secret key polynomials are selected by rejection from discrete Gaussians, then the public key, which is their ratio, is statistically indistinguishable from uniform over its domain. The security then follows from the already proven hardness of the RLWE problem.
Lattice Signatures Without Trapdoors
"... We provide an alternative method for constructing latticebased digital signatures which does not use the “hashandsign” methodology of Gentry, Peikert, and Vaikuntanathan (STOC 2008). Our resulting signature scheme is secure, in the random oracle model, based on the worstcase hardness of the Õ(n ..."
Abstract

Cited by 44 (8 self)
 Add to MetaCart
We provide an alternative method for constructing latticebased digital signatures which does not use the “hashandsign” methodology of Gentry, Peikert, and Vaikuntanathan (STOC 2008). Our resulting signature scheme is secure, in the random oracle model, based on the worstcase hardness of the Õ(n1.5)SIVP problem in general lattices. The secret key, public key, and the signature size of our scheme are smaller than in all previous instantiations of the hashandsign signature, and our signing algorithm is also quite simple, requiring just a few matrixvector multiplications and rejection samplings. We then also show that by slightly changing the parameters, one can get even more efficient signatures that are based on the hardness of the Learning With Errors problem. Our construction naturally transfers to the ring setting, where the size of the public and secret keys can be significantly shrunk, which results in the most practical todate provably secure signature scheme based on lattices.