Results 1  10
of
36
Analyzing Proofs in Analysis
 LOGIC: FROM FOUNDATIONS TO APPLICATIONS. EUROPEAN LOGIC COLLOQUIUM (KEELE
, 1993
"... ..."
Mathematically Strong Subsystems of Analysis With Low Rate of Growth of Provably Recursive Functionals
, 1995
"... This paper is the first one in a sequel of papers resulting from the authors Habilitationsschrift [22] which are devoted to determine the growth in proofs of standard parts of analysis. A hierarchy (GnA # )n#I N of systems of arithmetic in all finite types is introduced whose definable objects of ..."
Abstract

Cited by 34 (21 self)
 Add to MetaCart
This paper is the first one in a sequel of papers resulting from the authors Habilitationsschrift [22] which are devoted to determine the growth in proofs of standard parts of analysis. A hierarchy (GnA # )n#I N of systems of arithmetic in all finite types is introduced whose definable objects of type 1 = 0(0) correspond to the Grzegorczyk hierarchy of primitive recursive functions. We establish the following extraction rule for an extension of GnA # by quantifierfree choice ACqf and analytical axioms # having the form #x # #y ## sx#z # F0 (including also a `non standard' axiom F  which does not hold in the full settheoretic model but in the strongly majorizable functionals): From a proof GnA # +ACqf + # # #u 1 , k 0 #v ## tuk#w 0 A0(u, k, v, w) one can extract a uniform bound # such that #u 1 , k 0 #v ## tuk#w # #ukA0 (u, k, v, w) holds in the full settheoretic type structure. In case n = 2 (resp. n = 3) #uk is a polynomial (resp. an elementary recursive function) in k, u M := #x. max(u0, . . . , ux). In the present paper we show that for n # 2, GnA # +ACqf+F  proves a generalization of the binary Knig's lemma yielding new conservation results since the conclusion of the above rule can be verified in G max(3,n) A # in this case. In a subsequent paper we will show that many important ine#ective analytical principles and theorems can be proved already in G2A # +ACqf+# for suitable #. 1
Higher Order Logic
 In Handbook of Logic in Artificial Intelligence and Logic Programming
, 1994
"... Contents 1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 2 The expressive power of second order Logic : : : : : : : : : : : 3 2.1 The language of second order logic : : : : : : : : : : : : : 3 2.2 Expressing size : : : : : : : : : : : : : : : : : : : : : : : : 4 2.3 Definin ..."
Abstract

Cited by 18 (0 self)
 Add to MetaCart
Contents 1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 2 The expressive power of second order Logic : : : : : : : : : : : 3 2.1 The language of second order logic : : : : : : : : : : : : : 3 2.2 Expressing size : : : : : : : : : : : : : : : : : : : : : : : : 4 2.3 Defining data types : : : : : : : : : : : : : : : : : : : : : 6 2.4 Describing processes : : : : : : : : : : : : : : : : : : : : : 8 2.5 Expressing convergence using second order validity : : : : : : : : : : : : : : : : : : : : : : : : : 9 2.6 Truth definitions: the analytical hierarchy : : : : : : : : 10 2.7 Inductive definitions : : : : : : : : : : : : : : : : : : : : : 13 3 Canonical semantics of higher order logic : : : : : : : : : : : : 15 3.1 Tarskian semantics of second order logic : : : : : : : : : 15 3.2 Function and re
On the NoCounterexample Interpretation
 J. SYMBOLIC LOGIC
, 1997
"... In [15],[16] Kreisel introduced the nocounterexample interpretation (n.c.i.) of Peano arithmetic. In particular he proved, using a complicated "substitution method (due to W. Ackermann), that for every theorem A (A prenex) of firstorder Peano arithmetic PA one can find ordinal recursive functi ..."
Abstract

Cited by 18 (10 self)
 Add to MetaCart
In [15],[16] Kreisel introduced the nocounterexample interpretation (n.c.i.) of Peano arithmetic. In particular he proved, using a complicated "substitution method (due to W. Ackermann), that for every theorem A (A prenex) of firstorder Peano arithmetic PA one can find ordinal recursive functionals \Phi A of order type ! " 0 which realize the Herbrand normal form A of A. Subsequently more
Intuitionistic Choice and Classical Logic
 Arch. Math. Logic
, 1997
"... this paper we show how to combine the unrestricted countable choice, induction on infinite wellfounded trees and restricted classical logic in a constructively given model. For readers faniliar with intuitionistic systems [14], we may succinctly describe the theory we interpret as follows. Expand t ..."
Abstract

Cited by 16 (4 self)
 Add to MetaCart
this paper we show how to combine the unrestricted countable choice, induction on infinite wellfounded trees and restricted classical logic in a constructively given model. For readers faniliar with intuitionistic systems [14], we may succinctly describe the theory we interpret as follows. Expand the extensional version of HA
Elimination of Skolem functions for monotone formulas in analysis
 ARCHIVE FOR MATHEMATICAL LOGIC
"... ..."
Foundational and mathematical uses of higher types
 REFLECTIONS ON THE FOUNDATIONS OF MATHEMATICS: ESSAY IN HONOR OF SOLOMON FEFERMAN
, 1999
"... In this paper we develop mathematically strong systems of analysis in higher types which, nevertheless, are prooftheoretically weak, i.e. conservative over elementary resp. primitive recursive arithmetic. These systems are based on noncollapsing hierarchies ( n WKL+ ; n WKL+ ) of principles ..."
Abstract

Cited by 11 (4 self)
 Add to MetaCart
In this paper we develop mathematically strong systems of analysis in higher types which, nevertheless, are prooftheoretically weak, i.e. conservative over elementary resp. primitive recursive arithmetic. These systems are based on noncollapsing hierarchies ( n WKL+ ; n WKL+ ) of principles which generalize (and for n = 0 coincide with) the socalled `weak' König's lemma WKL (which has been studied extensively in the context of second order arithmetic) to logically more complex tree predicates. Whereas the second order context used in the program of reverse mathematics requires an encoding of higher analytical concepts like continuous functions F : X ! Y between Polish spaces X;Y , the more exible language of our systems allows to treat such objects directly. This is of relevance as the encoding of F used in reverse mathematics tacitly yields a constructively enriched notion of continuous functions which e.g. for F : IN ! IN can be seen (in our higher order context)
A ModelTheoretic Approach to Ordinal Analysis
 Bulletin of Symbolic Logic
, 1997
"... . We describe a modeltheoretic approach to ordinal analysis via the finite combinatorial notion of an #large set of natural numbers. In contrast to syntactic approaches that use cut elimination, this approach involves constructing finite sets of numbers with combinatorial properties that, in no ..."
Abstract

Cited by 11 (3 self)
 Add to MetaCart
. We describe a modeltheoretic approach to ordinal analysis via the finite combinatorial notion of an #large set of natural numbers. In contrast to syntactic approaches that use cut elimination, this approach involves constructing finite sets of numbers with combinatorial properties that, in nonstandard instances, give rise to models of the theory being analyzed. This method is applied to obtain ordinal analyses of a number of interesting subsystems of first and secondorder arithmetic. x1. Introduction. Two of proof theory's defining goals are the justification of classical theories on constructive grounds, and the extraction of constructive information from classical proofs. Since Gentzen, ordinal analysis has been a major component in these pursuits, and the assignment of recursive ordinals to theories has proven to be an illuminating way of measuring their constructive strength. The traditional approach to ordinal analysis, which uses cutelimination procedures to transfor...
Notions of computability at higher types I
 In Logic Colloquium 2000
, 2005
"... We discuss the conceptual problem of identifying the natural notions of computability at higher types (over the natural numbers). We argue for an eclectic approach, in which one considers a wide range of possible approaches to defining higher type computability and then looks for regularities. As a ..."
Abstract

Cited by 11 (5 self)
 Add to MetaCart
We discuss the conceptual problem of identifying the natural notions of computability at higher types (over the natural numbers). We argue for an eclectic approach, in which one considers a wide range of possible approaches to defining higher type computability and then looks for regularities. As a first step in this programme, we give an extended survey of the di#erent strands of research on higher type computability to date, bringing together material from recursion theory, constructive logic and computer science. The paper thus serves as a reasonably complete overview of the literature on higher type computability. Two sequel papers will be devoted to developing a more systematic account of the material reviewed here.
Logical axiomatizations of spacetime. Samples from the literature
 In: NonEuclidean Geometries (J'anos Bolyai Memorial Volume
, 2005
"... Abstract We study relativity theory as a theory in the sense of mathematical logic. We use firstorder logic (FOL) as a framework to do so. We aim at an “analysis of the logical structure of relativity theories”. First we build up (the kinematics of) special relativity in FOL, then analyze it, and t ..."
Abstract

Cited by 10 (6 self)
 Add to MetaCart
Abstract We study relativity theory as a theory in the sense of mathematical logic. We use firstorder logic (FOL) as a framework to do so. We aim at an “analysis of the logical structure of relativity theories”. First we build up (the kinematics of) special relativity in FOL, then analyze it, and then we experiment with generalizations in the direction of general relativity. The present paper gives samples from an ongoing broader research project which in turn is part of a research direction going back to Reichenbach and others in the 1920’s. We also try to give some perspective on the literature related in a broader sense. In the perspective of the present work, axiomatization is not a final goal. Axiomatization is only a first step, a tool. The goal is something like a conceptual analysis of relativity in the framework of logic. In section 1 we recall a complete FOLaxiomatization Specrel of special relativity from [5],[31]. In section 2 we answer questions from papers by Ax and Mundy concerning the logical status of faster than light motion (FTL) in relativity. We claim that already very small/weak fragments of Specrel prove “No FTL”. In section 3 we give a sketchy outlook for the possibility of generalizing Specrel to theories permitting accelerated observers (gravity). In section 4 we continue generalizing Specrel in the direction of general relativity by localizing it, i.e. by replacing it with a version still in firstorder logic but now local (in the sense of general relativity theory). In section 5 we give samples from the broader literature.