Results 1 
7 of
7
KLAIM: a Kernel Language for Agents Interaction and Mobility
 IEEE Transactions on Software Engineering
, 1997
"... We investigate the issue of designing a kernel programming language for Mobile Computing and describe Klaim, a language that supports a programming paradigm where processes, like data, can be moved from one computing environment to another. The language consists of a core Linda with multiple tuple s ..."
Abstract

Cited by 218 (52 self)
 Add to MetaCart
We investigate the issue of designing a kernel programming language for Mobile Computing and describe Klaim, a language that supports a programming paradigm where processes, like data, can be moved from one computing environment to another. The language consists of a core Linda with multiple tuple spaces and of a set of operators for building processes. Klaim naturally supports programming with explicit localities. Localities are firstclass data (they can be manipulated like any other data), but the language provides coordination mechanisms to control the interaction protocols among located processes. The formal operational semantics is useful for discussing the design of the language and provides guidelines for implementations. Klaim is equipped with a type system that statically checks access rights violations of mobile agents. Types are used to describe the intentions (read, write, execute, etc.) of processes in relation to the various localities. The type system is used...
Quantum Weakest Preconditions
 UNDER CONSIDERATION FOR PUBLICATION IN MATH. STRUCT. IN COMP. SCIENCE
, 2005
"... We develop a notion of predicate transformer and, in particular, the weakest precondition, appropriate for quantum computation. We show that there is a Stonetype duality between the usual statetransformer semantics and the weakest precondition semantics. Rather than trying to reduce quantum comput ..."
Abstract

Cited by 27 (2 self)
 Add to MetaCart
We develop a notion of predicate transformer and, in particular, the weakest precondition, appropriate for quantum computation. We show that there is a Stonetype duality between the usual statetransformer semantics and the weakest precondition semantics. Rather than trying to reduce quantum computation to probabilistic programming we develop a notion that is directly taken from concepts used in quantum computation. The proof that weakest preconditions exist for completely positive maps follows immediately from the Kraus representation theorem. As an example we give the semantics of Selinger’s language in terms of our weakest preconditions. We also cover some specific situations and exhibit an interesting link with stabilizers.
Domain theory for concurrency
, 2003
"... Concurrent computation can be given an abstract mathematical treatment very similar to that provided for sequential computation by domain theory and denotational semantics of Scott and Strachey. ..."
Abstract

Cited by 23 (6 self)
 Add to MetaCart
Concurrent computation can be given an abstract mathematical treatment very similar to that provided for sequential computation by domain theory and denotational semantics of Scott and Strachey.
A Semantic Theory for ValuePassing Processes Late Approach  Part I: A Denotational Model and Its Complete Axiomatization
, 1995
"... A general class of languages and denotational models for valuepassing calculi based on the late semantic approach is defined. A concrete instantiation of the general syntax is given. This is a modification of the standard CCS according to the late approach. A denotational model for the concrete ..."
Abstract

Cited by 11 (4 self)
 Add to MetaCart
A general class of languages and denotational models for valuepassing calculi based on the late semantic approach is defined. A concrete instantiation of the general syntax is given. This is a modification of the standard CCS according to the late approach. A denotational model for the concrete language is given, an instantiation of the general class. An equationally based proof system is defined and shown to be sound and complete with respect to the model.
Towards a Semantic Theory of CML
, 1995
"... A simple untyped language based on CML, Concurrent ML, is defined and analysed. The language contains a spawn operator for initiating new independent threads of computation and constructs for the exchange of data between these threads. A denotational model for the language is presented where denotat ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
A simple untyped language based on CML, Concurrent ML, is defined and analysed. The language contains a spawn operator for initiating new independent threads of computation and constructs for the exchange of data between these threads. A denotational model for the language is presented where denotations correspond to computations of values rather than simply values. It is shown to be fully abstract with respect to a behavioural preorder based on contextual testing. 1 Introduction The language Concurrent ML (CML), [18], is one of a number of recent languages which seeks to combine aspects of functional and concurrent programming. Standard ML, [19], is augmented with the ability to spawn off new independent threads of computation. Further constructs are added to enable these threads to synchronise and exchange data on communication channels. As it includes higherorder objects, which can be exchanged between threads as data, new channel name generation, and the ability to form abstractio...
ON FIXEDPOINTS OF MULTIVALUED FUNCTIONS ON COMPLETE LATTICES AND THEIR APPLICATION TO GENERALIZED LOGIC PROGRAMS
"... Abstract. Unlike monotone singlevalued functions, multivalued mappings may have none, one or (possibly infinitely) many minimal fixedpoints. The contribution of this work is twofold. At first we overview and investigate about the existence and computation of minimal fixedpoints of multivalued m ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
Abstract. Unlike monotone singlevalued functions, multivalued mappings may have none, one or (possibly infinitely) many minimal fixedpoints. The contribution of this work is twofold. At first we overview and investigate about the existence and computation of minimal fixedpoints of multivalued mappings, whose domain is a complete lattice and whose range is its power set. Second, we show how these results are applied to a general form of logic programs, where the truth space is a complete lattice. We show that a multivalued operator can be defined whose fixedpoints are in onetoone correspondence with the models of the logic program. Key words. Fixedpoints; multivalued functions; complete lattices; logic programming AMS subject classifications. 47H10, 06B23 68N17, 68Q55, 1. Introduction. It