Results 1  10
of
29
Hard and Easy Distributions of SAT Problems
, 1992
"... We report results from largescale experiments in satisfiability testing. As has been observed by others, testing the satisfiability of random formulas often appears surprisingly easy. Here we show that by using the right distribution of instances, and appropriate parameter values, it is possible to ..."
Abstract

Cited by 229 (17 self)
 Add to MetaCart
We report results from largescale experiments in satisfiability testing. As has been observed by others, testing the satisfiability of random formulas often appears surprisingly easy. Here we show that by using the right distribution of instances, and appropriate parameter values, it is possible to generate random formulas that are hard, that is, for which satisfiability testing is quite difficult. Our results provide a benchmark for the evaluation of satisfiabilitytesting procedures. Introduction Many computational tasks of interest to AI, to the extent that they can be precisely characterized at all, can be shown to be NPhard in their most general form. However, there is fundamental disagreement, at least within the AI community, about the implications of this. It is claimed on the one hand that since the performance of algorithms designed to solve NPhard tasks degrades rapidly with small increases in input size, something will need to be given up to obtain acceptable behavior....
Improvements To Propositional Satisfiability Search Algorithms
, 1995
"... ... quickly across a wide range of hard SAT problems than any other SAT tester in the literature on comparable platforms. On a Sun SPARCStation 10 running SunOS 4.1.3 U1, POSIT can solve hard random 400variable 3SAT problems in about 2 hours on the average. In general, it can solve hard nvariable ..."
Abstract

Cited by 168 (0 self)
 Add to MetaCart
... quickly across a wide range of hard SAT problems than any other SAT tester in the literature on comparable platforms. On a Sun SPARCStation 10 running SunOS 4.1.3 U1, POSIT can solve hard random 400variable 3SAT problems in about 2 hours on the average. In general, it can solve hard nvariable random 3SAT problems with search trees of size O(2 n=18:7 ). In addition to justifying these claims, this dissertation describes the most significant achievements of other researchers in this area, and discusses all of the widely known general techniques for speeding up SAT search algorithms. It should be useful to anyone interested in NPcomplete problems or combinatorial optimization in general, and it should be particularly useful to researchers in either Artificial Intelligence or Operations Research.
Algorithms for the Satisfiability (SAT) Problem: A Survey
 DIMACS Series in Discrete Mathematics and Theoretical Computer Science
, 1996
"... . The satisfiability (SAT) problem is a core problem in mathematical logic and computing theory. In practice, SAT is fundamental in solving many problems in automated reasoning, computeraided design, computeraided manufacturing, machine vision, database, robotics, integrated circuit design, compute ..."
Abstract

Cited by 131 (3 self)
 Add to MetaCart
. The satisfiability (SAT) problem is a core problem in mathematical logic and computing theory. In practice, SAT is fundamental in solving many problems in automated reasoning, computeraided design, computeraided manufacturing, machine vision, database, robotics, integrated circuit design, computer architecture design, and computer network design. Traditional methods treat SAT as a discrete, constrained decision problem. In recent years, many optimization methods, parallel algorithms, and practical techniques have been developed for solving SAT. In this survey, we present a general framework (an algorithm space) that integrates existing SAT algorithms into a unified perspective. We describe sequential and parallel SAT algorithms including variable splitting, resolution, local search, global optimization, mathematical programming, and practical SAT algorithms. We give performance evaluation of some existing SAT algorithms. Finally, we provide a set of practical applications of the sat...
Finding Hard Instances of the Satisfiability Problem: A Survey
, 1997
"... . Finding sets of hard instances of propositional satisfiability is of interest for understanding the complexity of SAT, and for experimentally evaluating SAT algorithms. In discussing this we consider the performance of the most popular SAT algorithms on random problems, the theory of average case ..."
Abstract

Cited by 119 (1 self)
 Add to MetaCart
. Finding sets of hard instances of propositional satisfiability is of interest for understanding the complexity of SAT, and for experimentally evaluating SAT algorithms. In discussing this we consider the performance of the most popular SAT algorithms on random problems, the theory of average case complexity, the threshold phenomenon, known lower bounds for certain classes of algorithms, and the problem of generating hard instances with solutions.
Generating Hard Satisfiability Problems
 Artificial Intelligence
, 1996
"... We report results from largescale experiments in satisfiability testing. As has been observed by others, testing the satisfiability of random formulas often appears surprisingly easy. Here we show that by using the right distribution of instances, and appropriate parameter values, it is possible ..."
Abstract

Cited by 100 (2 self)
 Add to MetaCart
We report results from largescale experiments in satisfiability testing. As has been observed by others, testing the satisfiability of random formulas often appears surprisingly easy. Here we show that by using the right distribution of instances, and appropriate parameter values, it is possible to generate random formulas that are hard, that is, for which satisfiability testing is quite difficult. Our results provide a benchmark for the evaluation of satisfiabilitytesting procedures. In Artificial Intelligence, 81 (19996) 1729. 1 Introduction Many computational tasks of interest to AI, to the extent that they can be precisely characterized at all, can be shown to be NPhard in their most general form. However, there is fundamental disagreement, at least within the AI community, about the implications of this. It is claimed on the one hand that since the performance of algorithms designed to solve NPhard tasks degrades rapidly with small increases in input size, something ...
Setting 2 variables at a time yields a new lower bound for random 3SAT (Extended Abstract)
 STOC
, 2000
"... Let X be a set of n Boolean variables and denote by C(X) the set of all 3clauses over X, i.e. the set of all 8(3) possible disjunctions of three distinct, noncomplementary literais from variables in X. Let F(n, m) be a random 3SAT formula formed by selecting, with replacement, m clauses uniformly ..."
Abstract

Cited by 35 (4 self)
 Add to MetaCart
Let X be a set of n Boolean variables and denote by C(X) the set of all 3clauses over X, i.e. the set of all 8(3) possible disjunctions of three distinct, noncomplementary literais from variables in X. Let F(n, m) be a random 3SAT formula formed by selecting, with replacement, m clauses uniformly at random from C(X) and taking their conjunction. The satisfiability threshold conjecture asserts that there exists a constant ra such that as n+ c¢, F(n, rn) is satisfiable with probability that tends to 1 if r < ra, but unsatisfiable with probability that tends to 1 if r:> r3. Experimental evidence suggests rz ~ 4.2. We prove rz> 3.145 improving over the previous best lower bound r3> 3.003 due to Frieze and Suen. For this, we introduce a satisfiability heuristic that works iteratively, permanently setting the value of a pair of variables in each round. The framework we develop for the analysis of our heuristic allows us to also derive most previous lower bounds for random 3SAT in a uniform manner and with little effort.
Satisfiability Solvers
, 2008
"... The past few years have seen an enormous progress in the performance of Boolean satisfiability (SAT) solvers. Despite the worstcase exponential run time of all known algorithms, satisfiability solvers are increasingly leaving their mark as a generalpurpose tool in areas as diverse as software and h ..."
Abstract

Cited by 25 (0 self)
 Add to MetaCart
The past few years have seen an enormous progress in the performance of Boolean satisfiability (SAT) solvers. Despite the worstcase exponential run time of all known algorithms, satisfiability solvers are increasingly leaving their mark as a generalpurpose tool in areas as diverse as software and hardware verification [29–31, 228], automatic test pattern generation [138, 221], planning [129, 197], scheduling [103], and even challenging problems from algebra [238]. Annual SAT competitions have led to the development of dozens of clever implementations of such solvers [e.g. 13,
Threshold Phenomena in Random Graph Colouring and Satisfiability
, 1999
"... We study threshold phenomena pertaining to the colourability of random graphs and the satisfiability of random formulas. Consider a random graph G(n, p) on n vertices formed by including each of the possible edges independently of all others with probability p. For a fixed integer k, let f k ..."
Abstract

Cited by 23 (4 self)
 Add to MetaCart
We study threshold phenomena pertaining to the colourability of random graphs and the satisfiability of random formulas. Consider a random graph G(n, p) on n vertices formed by including each of the possible edges independently of all others with probability p. For a fixed integer k, let f k (n, d) = Pr[G(n, d/n) is kcolourable]. Erdos asked the following fundamental question: for k 3, is there a constant c k such that for any # > 0, #) = 1 , and lim f k (n, c k + #) = 0 ? (1) We prove that for all k 3, there exists a function t k (n) such that (1) holds upon replacing c k by t k (n), thus establishing that indeed kcolourability has a sharp threshold. Let d k = sup{d lim n## f k (n, d) = 1}. Note that if c k exists then, by definition, c k = d k . For the basic and most studied case k = 3 we prove 3.84 < d 3 < 5.05 . These are the best
Results Related to Threshold Phenomena Research in Satisfiability: Lower Bounds
, 2000
"... We present a history of results related to the threshold phenomena which arise in the study of random Conjunctive Normal Form (CNF) formulas. In a companion paper [1] in this volume the major ideas used to achieve many of the lower bounds results on the location of the threshold are described in an ..."
Abstract

Cited by 21 (1 self)
 Add to MetaCart
We present a history of results related to the threshold phenomena which arise in the study of random Conjunctive Normal Form (CNF) formulas. In a companion paper [1] in this volume the major ideas used to achieve many of the lower bounds results on the location of the threshold are described in an informal, intuitive manner.
Some Pitfalls for Experimenters with Random SAT
 Artificial Intelligence
, 1996
"... We consider the use of random CNF formulas in evaluating the performance of SAT testing algorithms, and in particular the role that the phase transition phenomenon plays in this use. Examples from the literature illustrate the importance of understanding the properties of formula distributions prior ..."
Abstract

Cited by 20 (3 self)
 Add to MetaCart
We consider the use of random CNF formulas in evaluating the performance of SAT testing algorithms, and in particular the role that the phase transition phenomenon plays in this use. Examples from the literature illustrate the importance of understanding the properties of formula distributions prior to designing an experiment. We expect this to be of increasing importance in the field. 1 Introduction Satisfiability testing lies at the core of many computational problems and because of its close relationship to various reasoning tasks, this is especially so in Artificial Intelligence. Randomly generated CNF formulas are a popular class of test problems for evaluating the performance of SAT testing programs. Not surprisingly, the choice of formula distribution is crucial to the validity of any investigation using random formulas. In [23], we argued that some families of distributions were more useful sources of test material than others, and suggested choosing formulas from the "hard reg...