Results 1  10
of
24
Monotone Complexity
, 1990
"... We give a general complexity classification scheme for monotone computation, including monotone spacebounded and Turing machine models not previously considered. We propose monotone complexity classes including mAC i , mNC i , mLOGCFL, mBWBP , mL, mNL, mP , mBPP and mNP . We define a simple ..."
Abstract

Cited by 2350 (12 self)
 Add to MetaCart
We give a general complexity classification scheme for monotone computation, including monotone spacebounded and Turing machine models not previously considered. We propose monotone complexity classes including mAC i , mNC i , mLOGCFL, mBWBP , mL, mNL, mP , mBPP and mNP . We define a simple notion of monotone reducibility and exhibit complete problems. This provides a framework for stating existing results and asking new questions. We show that mNL (monotone nondeterministic logspace) is not closed under complementation, in contrast to Immerman's and Szelepcs 'enyi's nonmonotone result [Imm88, Sze87] that NL = coNL; this is a simple extension of the monotone circuit depth lower bound of Karchmer and Wigderson [KW90] for stconnectivity. We also consider mBWBP (monotone bounded width branching programs) and study the question of whether mBWBP is properly contained in mNC 1 , motivated by Barrington's result [Bar89] that BWBP = NC 1 . Although we cannot answer t...
The NPcompleteness column: an ongoing guide
 Journal of Algorithms
, 1985
"... This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book ‘‘Computers and Intractability: A Guide to the Theory of NPCompleteness,’ ’ W. H. Freeman & Co ..."
Abstract

Cited by 188 (0 self)
 Add to MetaCart
This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book ‘‘Computers and Intractability: A Guide to the Theory of NPCompleteness,’ ’ W. H. Freeman & Co., New York, 1979 (hereinafter referred to as ‘‘[G&J]’’; previous columns will be referred to by their dates). A background equivalent to that provided by [G&J] is assumed, and, when appropriate, crossreferences will be given to that book and the list of problems (NPcomplete and harder) presented there. Readers who have results they would like mentioned (NPhardness, PSPACEhardness, polynomialtimesolvability, etc.) or open problems they would like publicized, should
The monotone circuit complexity of Boolean functions
 Combinatorica
, 1987
"... Recently, Razborov obtained superpolynomial lower bounds for monotone circuits that lect cliques in graphs. In particular, Razborov showed that detecting cliques of size s in a graph dh m vertices requires monotone circuits of size.Q(m'/(log m) ~') for fixed s, and size rn ao°~') for,.:[log ml4J. I ..."
Abstract

Cited by 128 (4 self)
 Add to MetaCart
Recently, Razborov obtained superpolynomial lower bounds for monotone circuits that lect cliques in graphs. In particular, Razborov showed that detecting cliques of size s in a graph dh m vertices requires monotone circuits of size.Q(m'/(log m) ~') for fixed s, and size rn ao°~') for,.:[log ml4J. In this paper we modify the arguments of Razborov to obtain exponential lower bounds for,motone circuits. In particular, detecting cliques of size (1/4) (m/log m) ~'/a requires monotone circuits f size exp (£2((m/log m)~/:~)). For fixed s, any inonotone circuit that detects cliques of size s requires 'm'/(log m)') AND gates. We show that even a very rough approximation of the maximum clique e of a graph requires superpolynomial size monotone circuits, and give lower bounds for some net Boolean functions. Our best lower bound fi~r an NP function of n variables is exp (f2(n w4. (log n)~/~)), improving a recent result of exp (f2(nws')) due to Andreev. I.
On the power of smalldepth threshold circuits
 Proceedings 31st Annual IEEE Symposium on Foundations of Computer Science
, 1990
"... Abstract. Weinvestigate the power of threshold circuits of small depth. In particular, we give functions that require exponential size unweighted threshold circuits of depth 3 when we restrict the bottom fanin. We also prove that there are monotone functions fk that can be computed in depth k and li ..."
Abstract

Cited by 103 (2 self)
 Add to MetaCart
Abstract. Weinvestigate the power of threshold circuits of small depth. In particular, we give functions that require exponential size unweighted threshold circuits of depth 3 when we restrict the bottom fanin. We also prove that there are monotone functions fk that can be computed in depth k and linear size ^ � _circuits but require exponential size to compute by a depth k; 1 monotone weighted threshold circuit. Key words. Circuit complexity, monotone circuits, threshold circuits, lower bounds Subject classi cations. 68Q15, 68Q99 1.
Monotone Circuits for Matching Require Linear Depth
"... We prove that monotone circuits computing the perfect matching function on nvertex graphs require\Omega\Gamma n) depth. This implies an exponential gap between the depth of monotone and nonmonotone circuits. ..."
Abstract

Cited by 77 (8 self)
 Add to MetaCart
We prove that monotone circuits computing the perfect matching function on nvertex graphs require\Omega\Gamma n) depth. This implies an exponential gap between the depth of monotone and nonmonotone circuits.
The History and Status of the P versus NP Question
, 1992
"... this article, I have attempted to organize and describe this literature, including an occasional opinion about the most fruitful directions, but no technical details. In the first half of this century, work on the power of formal systems led to the formalization of the notion of algorithm and the re ..."
Abstract

Cited by 50 (0 self)
 Add to MetaCart
this article, I have attempted to organize and describe this literature, including an occasional opinion about the most fruitful directions, but no technical details. In the first half of this century, work on the power of formal systems led to the formalization of the notion of algorithm and the realization that certain problems are algorithmically unsolvable. At around this time, forerunners of the programmable computing machine were beginning to appear. As mathematicians contemplated the practical capabilities and limitations of such devices, computational complexity theory emerged from the theory of algorithmic unsolvability. Early on, a particular type of computational task became evident, where one is seeking an object which lies
Separation of the Monotone NC Hierarchy
, 1999
"... We prove tight lower bounds, of up to n ffl , for the monotone depth of functions in monotoneP. As a result we achieve the separation of the following classes. 1. monotoneNC 6= monotoneP. 2. For every i 1, monotoneNC i 6= monotoneNC i+1 . 3. More generally: For any integer function D( ..."
Abstract

Cited by 35 (0 self)
 Add to MetaCart
We prove tight lower bounds, of up to n ffl , for the monotone depth of functions in monotoneP. As a result we achieve the separation of the following classes. 1. monotoneNC 6= monotoneP. 2. For every i 1, monotoneNC i 6= monotoneNC i+1 . 3. More generally: For any integer function D(n), up to n ffl (for some ffl ? 0), we give an explicit example of a monotone Boolean function, that can be computed by polynomial size monotone Boolean circuits of depth D(n), but that cannot be computed by any (fanin 2) monotone Boolean circuits of depth less than Const \Delta D(n) (for some constant Const). Only a separation of monotoneNC 1 from monotoneNC 2 was previously known. Our argument is more general: we define a new class of communication complexity search problems, referred to below as DART games, and we prove a tight lower bound for the communication complexity of every member of this class. As a result we get lower bounds for the monotone depth of many functions. In...
Two Lower Bounds for Branching Programs
, 1986
"... . The first result concerns branching programs having width (log n) O(1) . We give an \Omega\Gamma n log n= log log n) lower bound for the size of such branching programs computing almost any symmetric Boolean function and in particular the following explicit function: "the sum of the input vari ..."
Abstract

Cited by 19 (1 self)
 Add to MetaCart
. The first result concerns branching programs having width (log n) O(1) . We give an \Omega\Gamma n log n= log log n) lower bound for the size of such branching programs computing almost any symmetric Boolean function and in particular the following explicit function: "the sum of the input variables is a quadratic residue mod p" where p is any given prime between n 1=4 and n 1=3 . This is a strengthening of previous nonlinear lower bounds obtained by Chandra, Furst, Lipton and by Pudl'ak. We mention that by iterating our method the result can be further strengthened to \Omega\Gamma n log n). The second result is a C n lower bound for readonceonly branching programs computing an explicit Boolean function. For n = \Gamma v 2 \Delta , the function computes the parity of the number of triangles in a graph on v vertices. This improves previous exp(c p n) lower bounds for other graph functions by Wegener and Z'ak. The result implies a linear lower bound for the space comp...
The Fusion Method for Lower Bounds in Circuit Complexity
 Keszthely (Hungary
, 1993
"... This paper coins the term "The Fusion Method" to a recent approach for proving circuit lower bounds. It describes the method, and surveys its achievements, potential and challenges. 1 Introduction In a recent paper, Karchmer [6] suggested an elegant way in which one can view at the same time both t ..."
Abstract

Cited by 10 (0 self)
 Add to MetaCart
This paper coins the term "The Fusion Method" to a recent approach for proving circuit lower bounds. It describes the method, and surveys its achievements, potential and challenges. 1 Introduction In a recent paper, Karchmer [6] suggested an elegant way in which one can view at the same time both the "approximation method" of Razborov [13] and the "topological approach" of Sipser [15] for proving circuit lower bounds. In Karchmer's setting the lower bound prover shows that a given circuit C is too small for computing a given function f by contradiction, in the following way. She tries to combine (or 'fuse', as we propose calling it) correct accepting computations of inputs in f \Gamma1 (1) by C into an incorrect accepting computation of an input in f \Gamma1 (0). It turns out that this "Fusion Method" reduces the dynamic computation of f by C into a static combinatorial cover problem, which provides the lower bound. Moreover, different restrictions on how we can fuse computations ...