Results 1  10
of
350
Models and issues in data stream systems
 IN PODS
, 2002
"... In this overview paper we motivate the need for and research issues arising from a new model of data processing. In this model, data does not take the form of persistent relations, but rather arrives in multiple, continuous, rapid, timevarying data streams. In addition to reviewing past work releva ..."
Abstract

Cited by 786 (19 self)
 Add to MetaCart
(Show Context)
In this overview paper we motivate the need for and research issues arising from a new model of data processing. In this model, data does not take the form of persistent relations, but rather arrives in multiple, continuous, rapid, timevarying data streams. In addition to reviewing past work relevant to data stream systems and current projects in the area, the paper explores topics in stream query languages, new requirements and challenges in query processing, and algorithmic issues.
Data Streams: Algorithms and Applications
, 2005
"... In the data stream scenario, input arrives very rapidly and there is limited memory to store the input. Algorithms have to work with one or few passes over the data, space less than linear in the input size or time significantly less than the input size. In the past few years, a new theory has emerg ..."
Abstract

Cited by 533 (22 self)
 Add to MetaCart
(Show Context)
In the data stream scenario, input arrives very rapidly and there is limited memory to store the input. Algorithms have to work with one or few passes over the data, space less than linear in the input size or time significantly less than the input size. In the past few years, a new theory has emerged for reasoning about algorithms that work within these constraints on space, time, and number of passes. Some of the methods rely on metric embeddings, pseudorandom computations, sparse approximation theory and communication complexity. The applications for this scenario include IP network traffic analysis, mining text message streams and processing massive data sets in general. Researchers in Theoretical Computer Science, Databases, IP Networking and Computer Systems are working on the data stream challenges. This article is an overview and survey of data stream algorithmics and is an updated version of [175].1
Approximate distance oracles
, 2004
"... Let G = (V, E) be an undirected weighted graph with V  = n and E  = m. Let k ≥ 1 be an integer. We show that G = (V, E) can be preprocessed in O(kmn 1/k) expected time, constructing a data structure of size O(kn 1+1/k), such that any subsequent distance query can be answered, approximately, in ..."
Abstract

Cited by 273 (9 self)
 Add to MetaCart
Let G = (V, E) be an undirected weighted graph with V  = n and E  = m. Let k ≥ 1 be an integer. We show that G = (V, E) can be preprocessed in O(kmn 1/k) expected time, constructing a data structure of size O(kn 1+1/k), such that any subsequent distance query can be answered, approximately, in O(k) time. The approximate distance returned is of stretch at most 2k − 1, i.e., the quotient obtained by dividing the estimated distance by the actual distance lies between 1 and 2k−1. A 1963 girth conjecture of Erdős, implies that Ω(n 1+1/k) space is needed in the worst case for any real stretch strictly smaller than 2k + 1. The space requirement of our algorithm is, therefore, essentially optimal. The most impressive feature of our data structure is its constant query time, hence the name “oracle”. Previously, data structures that used only O(n 1+1/k) space had a query time of Ω(n 1/k). Our algorithms are extremely simple and easy to implement efficiently. They also provide faster constructions of sparse spanners of weighted graphs, and improved tree covers and distance labelings of weighted or unweighted graphs.
WaveletBased Histograms for Selectivity Estimation
"... Query optimization is an integral part of relational database management systems. One important task in query optimization is selectivity estimation, that is, given a query P, we need to estimate the fraction of records in the database that satisfy P. Many commercial database systems maintain histog ..."
Abstract

Cited by 245 (16 self)
 Add to MetaCart
Query optimization is an integral part of relational database management systems. One important task in query optimization is selectivity estimation, that is, given a query P, we need to estimate the fraction of records in the database that satisfy P. Many commercial database systems maintain histograms to approximate the frequency distribution of values in the attributes of relations. In this paper, we present a technique based upon a multiresolution wavelet decomposition for building histograms on the underlying data distributions, with applications to databases, statistics, and simulation. Histograms built on the cumulative data values give very good approximations with limited space usage. We give fast algorithms for constructing histograms and using
Approximate Computation of Multidimensional Aggregates of Sparse Data Using Wavelets
"... Computing multidimensional aggregates in high dimensions is a performance bottleneck for many OLAP applications. Obtaining the exact answer to an aggregation query can be prohibitively expensive in terms of time and/or storage space in a data warehouse environment. It is advantageous to have fast, a ..."
Abstract

Cited by 198 (3 self)
 Add to MetaCart
(Show Context)
Computing multidimensional aggregates in high dimensions is a performance bottleneck for many OLAP applications. Obtaining the exact answer to an aggregation query can be prohibitively expensive in terms of time and/or storage space in a data warehouse environment. It is advantageous to have fast, approximate answers to OLAP aggregation queries. In this paper, we present anovel method that provides approximate answers to highdimensional OLAP aggregation queries in massive sparse data sets in a timeefficient and spaceefficient manner. We construct a compact data cube, which is an approximate and spaceefficient representation of the underlying multidimensional array, based upon a multiresolution wavelet decomposition. In the online phase, each aggregation query can generally be answered using the compact data cube in one I/O or a small number of I/Os, depending upon the desired accuracy. We present two I/Oefficient algorithms to construct the compact data cube for the important case of sparse highdimensional arrays, which often arise in practice. The traditional histogram methods are infeasible for the massive highdimensional data sets in OLAP applications. Previously developed wavelet techniques are efficient only for dense data. Our online query processing algorithm is very fast and capable of refining answers as the user demands more accuracy. Experiments on real data show that our method provides significantly more accurate results for typical OLAP aggregation queries than other efficient approximation techniques such as random sampling.
GPUTeraSort: High Performance Graphics Coprocessor Sorting for Large Database Management
 SIGMOD
, 2006
"... We present a new algorithm, GPUTeraSort, to sort billionrecord widekey databases using a graphics processing unit (GPU) Our algorithm uses the data and task parallelism on the GPU to perform memoryintensive and computeintensive tasks while the CPU is used to perform I/O and resource management. ..."
Abstract

Cited by 153 (8 self)
 Add to MetaCart
(Show Context)
We present a new algorithm, GPUTeraSort, to sort billionrecord widekey databases using a graphics processing unit (GPU) Our algorithm uses the data and task parallelism on the GPU to perform memoryintensive and computeintensive tasks while the CPU is used to perform I/O and resource management. We therefore exploit both the highbandwidth GPU memory interface and the lowerbandwidth CPU main memory interface and achieve higher memory bandwidth than purely CPUbased algorithms. GPUTeraSort is a twophase task pipeline: (1) read disk, build keys, sort using the GPU, generate runs, write disk, and (2) read, merge, write. It also pipelines disk transfers and achieves nearpeak I/O performance. We have tested the performance of GPUTeraSort on billionrecord files using the standard Sort benchmark. In practice, a 3 GHz Pentium IV PC with $265 NVIDIA 7800 GT GPU is significantly faster than optimized CPUbased algorithms on much faster processors, sorting 60GB for a penny; the best reported PennySort priceperformance. These results suggest that a GPU coprocessor can significantly improve performance on large data processing tasks.
Representing and querying correlated tuples in probabilistic databases
 In ICDE
, 2007
"... Probabilistic databases have received considerable attention recently due to the need for storing uncertain data produced by many real world applications. The widespread use of probabilistic databases is hampered by two limitations: (1) current probabilistic databases make simplistic assumptions abo ..."
Abstract

Cited by 142 (11 self)
 Add to MetaCart
(Show Context)
Probabilistic databases have received considerable attention recently due to the need for storing uncertain data produced by many real world applications. The widespread use of probabilistic databases is hampered by two limitations: (1) current probabilistic databases make simplistic assumptions about the data (e.g., complete independence among tuples) that make it difficult to use them in applications that naturally produce correlated data, and (2) most probabilistic databases can only answer a restricted subset of the queries that can be expressed using traditional query languages. We address both these limitations by proposing a framework that can represent not only probabilistic tuples, but also correlations that may be present among them. Our proposed framework naturally lends itself to the possible world semantics thus preserving the precise query semantics extant in current probabilistic databases. We develop an efficient strategy for query evaluation over such probabilistic databases by casting the query processing problem as an inference problem in an appropriately constructed probabilistic graphical model. We present several optimizations specific to probabilistic databases that enable efficient query evaluation. We validate our approach by presenting an experimental evaluation that illustrates the effectiveness of our techniques at answering various queries using real and synthetic datasets. 1
Terrain simplification simplified: a general framework for viewdependent outofcore visualization.
 IEEE Transactions on Visualization and Computer Graphics,
, 2002
"... ..."
P,Pascucci V. Visualization of Large Terrains Made Easy [C
 In Proceedings of IEEE Visualization 2001
"... We present an elegant and simple to implement framework for performing outofcore visualization and viewdependent refinement of large terrain surfaces. Contrary to the recent trend of increasingly elaborate algorithms for largescale terrain visualization, our algorithms and data structures have ..."
Abstract

Cited by 87 (5 self)
 Add to MetaCart
(Show Context)
We present an elegant and simple to implement framework for performing outofcore visualization and viewdependent refinement of large terrain surfaces. Contrary to the recent trend of increasingly elaborate algorithms for largescale terrain visualization, our algorithms and data structures have been designed with the primary goal of simplicity and efficiency of implementation. Our approach to managing large terrain data also departs from more conventional strategies based on data tiling. Rather than emphasizing how to segment and efficiently bring data in and out of memory, we focus on the manner in which the data is laid out to achieve good memory coherency for data accesses made in a topdown (coarsetofine) refinement of the terrain. We present and compare the results of using several different data indexing schemes, and propose a simple to compute index that yields substantial improvements in locality and speed over more commonly used data layouts. Our second contribution is a new and simple, yet easy to generalize method for viewdependent refinement. Similar to several published methods in this area, we use longest edge bisection in a topdown traversal of the mesh hierarchy to produce a continuous surface with subdivision connectivity. In tandem with the refinement, we perform view frustum culling and triangle stripping. These three components are done together in a single pass over the mesh. We show how this framework supports virtually any error metric, while still being highly memory and compute efficient. 1
On TwoDimensional Indexability and Optimal Range Search Indexing (Extended Abstract)
, 1999
"... Lars Arge Vasilis Samoladas y Jeffrey Scott Vitter z Abstract In this paper we settle several longstanding open problems in theory of indexability and external orthogonal range searching. In the first part of the paper, we apply the theory of indexability to the problem of twodimensional rang ..."
Abstract

Cited by 86 (25 self)
 Add to MetaCart
Lars Arge Vasilis Samoladas y Jeffrey Scott Vitter z Abstract In this paper we settle several longstanding open problems in theory of indexability and external orthogonal range searching. In the first part of the paper, we apply the theory of indexability to the problem of twodimensional range searching. We show that the special case of 3sided querying can be solved with constant redundancy and access overhead. From this, we derive indexing schemes for general 4sided range queries that exhibit an optimal tradeoff between redundancy and access overhead.