Results 1 
7 of
7
Logic Programming in the LF Logical Framework
, 1991
"... this paper we describe Elf, a metalanguage intended for environments dealing with deductive systems represented in LF. While this paper is intended to include a full description of the Elf core language, we only state, but do not prove here the most important theorems regarding the basic building b ..."
Abstract

Cited by 177 (50 self)
 Add to MetaCart
this paper we describe Elf, a metalanguage intended for environments dealing with deductive systems represented in LF. While this paper is intended to include a full description of the Elf core language, we only state, but do not prove here the most important theorems regarding the basic building blocks of Elf. These proofs are left to a future paper. A preliminary account of Elf can be found in [26]. The range of applications of Elf includes theorem proving and proof transformation in various logics, definition and execution of structured operational and natural semantics for programming languages, type checking and type inference, etc. The basic idea behind Elf is to unify logic definition (in the style of LF) with logic programming (in the style of Prolog, see [22, 24]). It achieves this unification by giving types an operational interpretation, much the same way that Prolog gives certain formulas (Hornclauses) an operational interpretation. An alternative approach to logic programming in LF has been developed independently by Pym [28]. Here are some of the salient characteristics of our unified approach to logic definition and metaprogramming. First of all, the Elf search process automatically constructs terms that can represent objectlogic proofs, and thus a program need not construct them explicitly. This is in contrast to logic programming languages where executing a logic program corresponds to theorem proving in a metalogic, but a metaproof is never constructed or used and it is solely the programmer's responsibility to construct objectlogic proofs where they are needed. Secondly, the partial correctness of many metaprograms with respect to a given logic can be expressed and proved by Elf itself (see the example in Section 5). This creates the possibilit...
tps: A theorem proving system for classical type theory
 Journal of Automated Reasoning
, 1996
"... This is a description of TPS, a theorem proving system for classical type theory (Church’s typed λcalculus). TPS has been designed to be a general research tool for manipulating wffs of first and higherorder logic, and searching for proofs of such wffs interactively or automatically, or in a comb ..."
Abstract

Cited by 71 (6 self)
 Add to MetaCart
(Show Context)
This is a description of TPS, a theorem proving system for classical type theory (Church’s typed λcalculus). TPS has been designed to be a general research tool for manipulating wffs of first and higherorder logic, and searching for proofs of such wffs interactively or automatically, or in a combination of these modes. An important feature of TPS is the ability to translate between expansion proofs and natural deduction proofs. Examples of theorems which TPS can prove completely automatically are given to illustrate certain aspects of TPS’s behavior and problems of theorem proving in higherorder logic. 7
Pure Type Systems with Definitions
, 1993
"... In this paper, an extension of Pure Type Systems (PTS's) with definitions is presented. We prove this extension preserves many of the properties of PTS's. The main result is a proof that for many PTS's, including the Calculus of Constructions, this extension preserves strong normalisa ..."
Abstract

Cited by 21 (1 self)
 Add to MetaCart
(Show Context)
In this paper, an extension of Pure Type Systems (PTS's) with definitions is presented. We prove this extension preserves many of the properties of PTS's. The main result is a proof that for many PTS's, including the Calculus of Constructions, this extension preserves strong normalisation.
TPS: A TheoremProving System for Classical Type Theory
, 1996
"... . This is description of TPS, a theoremproving system for classical type theory (Church's typed #calculus). TPS has been designed to be a general research tool for manipulating wffs of first and higherorder logic, and searching for proofs of such wffs interactively or automatically, or in a ..."
Abstract

Cited by 17 (0 self)
 Add to MetaCart
. This is description of TPS, a theoremproving system for classical type theory (Church's typed #calculus). TPS has been designed to be a general research tool for manipulating wffs of first and higherorder logic, and searching for proofs of such wffs interactively or automatically, or in a combination of these modes. An important feature of TPS is the ability to translate between expansion proofs and natural deduction proofs. Examples of theorems that TPS can prove completely automatically are given to illustrate certain aspects of TPS's behavior and problems of theorem proving in higherorder logic. AMS Subject Classification: 0304, 68T15, 03B35, 03B15, 03B10. Key words: higherorder logic, type theory, mating, connection, expansion proof, natural deduction. 1. Introduction TPS is a theoremproving system for classical type theory ## (Church's typed #calculus [20]) which has been under development at Carnegie Mellon University for a number years. This paper gives a general...
Typechecking in Pure Type Systems
 Informal proceedings of Logical Frameworks'92
, 1992
"... Introduction This work is motivated by two related problems. The first is to find reasonable algorithms for typechecking Pure Type Systems [Bar91] (PTS); the second is a technical question about PTS, the so called Expansion Postponment property (EP), which is tantalizingly simple but remains unsolv ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
Introduction This work is motivated by two related problems. The first is to find reasonable algorithms for typechecking Pure Type Systems [Bar91] (PTS); the second is a technical question about PTS, the so called Expansion Postponment property (EP), which is tantalizingly simple but remains unsolved. There are several implementations of formal systems that are either PTS or closely related to PTS. For example, LEGO [LP92] implements the Pure Calculus of Constructions [CH88] (PCC), the Extended Calculus of Constructions [Luo90] and the Edinburgh Logical Framework [HHP87]. ELF [Pfe89] implements LF; CONSTRUCTOR [Hel91] implements arbitrary PTS with finite set of sorts. Are these implementations actually correct? It is not difficult to find a natural efficient algorithm that is provably sound (Section 3), but completeness is more difficult. In fact Jutting has shown typechecking is decidable for all normalizing PTS with a finite set of sorts [vBJ92], but his algorithm, which com
TPS: A Theorem Proving System for Classical Type Theory
, 1995
"... TPS: a theorem proving system for classical type theory ..."
(Show Context)