Results 1  10
of
121
The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms
 Russian Math. Surveys
, 1970
"... In 1964 Kolmogorov introduced the concept of the complexity of a finite object (for instance, the words in a certain alphabet). He defined complexity as the minimum number of binary signs containing all the information about a given object that are sufficient for its recovery (decoding). This defini ..."
Abstract

Cited by 220 (1 self)
 Add to MetaCart
In 1964 Kolmogorov introduced the concept of the complexity of a finite object (for instance, the words in a certain alphabet). He defined complexity as the minimum number of binary signs containing all the information about a given object that are sufficient for its recovery (decoding). This definition depends essentially on the method of decoding. However, by means of the general theory of algorithms, Kolmogorov was able to give an invariant (universal) definition of complexity. Related concepts were investigated by Solotionoff (U.S.A.) and Markov. Using the concept of complexity, Kolmogorov gave definitions of the quantity of information in finite objects and of the concept of a random sequence (which was then defined more precisely by MartinLof). Afterwards, this circle of questions developed rapidly. In particular, an interesting development took place of the ideas of Markov on the application of the concept of complexity to the study of quantitative questions in the theory of algorithms. The present article is a survey of the fundamental results connected with the brief remarks above.
Dimension in Complexity Classes
 SIAM Journal on Computing
, 2000
"... A theory of resourcebounded dimension is developed using gales, which are natural generalizations of martingales. When the resource bound (a parameter of the theory) is unrestricted, the resulting dimension is precisely the classical Hausdorff dimension (sometimes called "fractal dimension&qu ..."
Abstract

Cited by 107 (16 self)
 Add to MetaCart
(Show Context)
A theory of resourcebounded dimension is developed using gales, which are natural generalizations of martingales. When the resource bound (a parameter of the theory) is unrestricted, the resulting dimension is precisely the classical Hausdorff dimension (sometimes called "fractal dimension"). Other choices of the parameter yield internal dimension theories in E, E 2 , ESPACE, and other complexity classes, and in the class of all decidable problems. In general, if C is such a class, then every set X of languages has a dimension in C, which is a real number dim(X j C) 2 [0; 1]. Along with the elements of this theory, two preliminary applications are presented: 1. For every real number 0 1 2 , the set FREQ( ), consisting of all languages that asymptotically contain at most of all strings, has dimension H()  the binary entropy of  in E and in E 2 . 2. For every real number 0 1, the set SIZE( 2 n n ), consisting of all languages decidable by Boolean circuits of at most 2 n n gates, has dimension in ESPACE.
Effective strong dimension in algorithmic information and computational complexity
 SIAM Journal on Computing
, 2004
"... The two most important notions of fractal dimension are Hausdorff dimension, developed by Hausdorff (1919), and packing dimension, developed independently by Tricot (1982) and Sullivan (1984). Both dimensions have the mathematical advantage of being defined from measures, and both have yielded exten ..."
Abstract

Cited by 75 (25 self)
 Add to MetaCart
(Show Context)
The two most important notions of fractal dimension are Hausdorff dimension, developed by Hausdorff (1919), and packing dimension, developed independently by Tricot (1982) and Sullivan (1984). Both dimensions have the mathematical advantage of being defined from measures, and both have yielded extensive applications in fractal geometry and dynamical systems. Lutz (2000) has recently proven a simple characterization of Hausdorff dimension in terms of gales, which are betting strategies that generalize martingales. Imposing various computability and complexity constraints on these gales produces a spectrum of effective versions of Hausdorff dimension, including constructive, computable, polynomialspace, polynomialtime, and finitestate dimensions. Work by several investigators has already used these effective dimensions to shed significant new light on a variety of topics in theoretical computer science. In this paper we show that packing dimension can also be characterized in terms of gales. Moreover, even though the usual definition of packing dimension is considerably more complex than that of Hausdorff dimension, our gale characterization of packing dimension is an exact dual
ResourceBounded Measure and Randomness
"... We survey recent results on resourcebounded measure and randomness in structural complexity theory. In particular, we discuss applications of these concepts to the exponential time complexity classes and . Moreover, we treat timebounded genericity and stochasticity concepts which are weaker than ..."
Abstract

Cited by 42 (6 self)
 Add to MetaCart
We survey recent results on resourcebounded measure and randomness in structural complexity theory. In particular, we discuss applications of these concepts to the exponential time complexity classes and . Moreover, we treat timebounded genericity and stochasticity concepts which are weaker than timebounded randomness but which suffice for many of the applications in complexity theory.
Prequential Probability: Principles and Properties
, 1997
"... this paper we first illustrate the above considerations for a variety of appealling criteria, and then, in an attempt to understand this behaviour, introduce a new gametheoretic framework for Probability Theory, the `prequential framework', which is particularly suited for the study of such pr ..."
Abstract

Cited by 38 (3 self)
 Add to MetaCart
this paper we first illustrate the above considerations for a variety of appealling criteria, and then, in an attempt to understand this behaviour, introduce a new gametheoretic framework for Probability Theory, the `prequential framework', which is particularly suited for the study of such problems.
Randomness in Computability Theory
, 2000
"... We discuss some aspects of algorithmic randomness and state some open problems in this area. The first part is devoted to the question "What is a computably random sequence?" Here we survey some of the approaches to algorithmic randomness and address some questions on these concepts. I ..."
Abstract

Cited by 29 (0 self)
 Add to MetaCart
We discuss some aspects of algorithmic randomness and state some open problems in this area. The first part is devoted to the question "What is a computably random sequence?" Here we survey some of the approaches to algorithmic randomness and address some questions on these concepts. In the second part we look at the Turing degrees of MartinLof random sets. Finally, in the third part we deal with relativized randomness. Here we look at oracles which do not change randomness. 1980 Mathematics Subject Classification. Primary 03D80; Secondary 03D28. 1 Introduction Formalizations of the intuitive notions of computability and randomness are among the major achievements in the foundations of mathematics in the 20th century. It is commonly accepted that various equivalent formal computability notions  like Turing computability or recursiveness  which were introduced in the 1930s and 1940s adequately capture computability in the intuitive sense. This belief is expressed in the w...