Results 1  10
of
394
Bayes Factors
, 1995
"... In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null ..."
Abstract

Cited by 981 (70 self)
 Add to MetaCart
In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null is onehalf. Although there has been much discussion of Bayesian hypothesis testing in the context of criticism of P values, less attention has been given to the Bayes factor as a practical tool of applied statistics. In this paper we review and discuss the uses of Bayes factors in the context of five scientific applications in genetics, sports, ecology, sociology and psychology.
Statistical pattern recognition: A review
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2000
"... The primary goal of pattern recognition is supervised or unsupervised classification. Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, neural network techniques ..."
Abstract

Cited by 657 (22 self)
 Add to MetaCart
The primary goal of pattern recognition is supervised or unsupervised classification. Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, neural network techniques and methods imported from statistical learning theory have bean receiving increasing attention. The design of a recognition system requires careful attention to the following issues: definition of pattern classes, sensing environment, pattern representation, feature extraction and selection, cluster analysis, classifier design and learning, selection of training and test samples, and performance evaluation. In spite of almost 50 years of research and development in this field, the general problem of recognizing complex patterns with arbitrary orientation, location, and scale remains unsolved. New and emerging applications, such as data mining, web searching, retrieval of multimedia data, face recognition, and cursive handwriting recognition, require robust and efficient pattern recognition techniques. The objective of this review paper is to summarize and compare some of the wellknown methods used in various stages of a pattern recognition system and identify research topics and applications which are at the forefront of this exciting and challenging field.
Automatic Subspace Clustering of High Dimensional Data
 Data Mining and Knowledge Discovery
, 2005
"... Data mining applications place special requirements on clustering algorithms including: the ability to find clusters embedded in subspaces of high dimensional data, scalability, enduser comprehensibility of the results, nonpresumption of any canonical data distribution, and insensitivity to the or ..."
Abstract

Cited by 561 (12 self)
 Add to MetaCart
Data mining applications place special requirements on clustering algorithms including: the ability to find clusters embedded in subspaces of high dimensional data, scalability, enduser comprehensibility of the results, nonpresumption of any canonical data distribution, and insensitivity to the order of input records. We present CLIQUE, a clustering algorithm that satisfies each of these requirements. CLIQUE identifies dense clusters in subspaces of maximum dimensionality. It generates cluster descriptions in the form of DNF expressions that are minimized for ease of comprehension. It produces identical results irrespective of the order in which input records are presented and does not presume any specific mathematical form for data distribution. Through experiments, we show that CLIQUE efficiently finds accurate clusters in large high dimensional datasets.
Blobworld: Image segmentation using ExpectationMaximization and its application to image querying
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1999
"... Retrieving images from large and varied collections using image content as a key is a challenging and important problem. We present a new image representation which provides a transformation from the raw pixel data to a small set of image regions which are coherent in color and texture. This "Blobwo ..."
Abstract

Cited by 334 (9 self)
 Add to MetaCart
Retrieving images from large and varied collections using image content as a key is a challenging and important problem. We present a new image representation which provides a transformation from the raw pixel data to a small set of image regions which are coherent in color and texture. This "Blobworld" representation is created by clustering pixels in a joint colortextureposition feature space. The segmentation algorithm is fully automatic and has been run on a collection of 10,000 natural images. We describe a system that uses the Blobworld representation to retrieve images from this collection. An important aspect of the system is that the user is allowed to view the internal representation of the submitted image and the query results. Similar systems do not offer the user this view into the workings of the system; consequently, query results from these systems can be inexplicable, despite the availability of knobs for adjusting the similarity metrics. By finding image regions whi...
Blobworld: A System for RegionBased Image Indexing and Retrieval
 In Third International Conference on Visual Information Systems
, 1999
"... . Blobworld is a system for image retrieval based on finding coherent image regions which roughly correspond to objects. Each image is automatically segmented into regions ("blobs") with associated color and texture descriptors. Querying is based on the attributes of one or two regions of interest, ..."
Abstract

Cited by 306 (4 self)
 Add to MetaCart
. Blobworld is a system for image retrieval based on finding coherent image regions which roughly correspond to objects. Each image is automatically segmented into regions ("blobs") with associated color and texture descriptors. Querying is based on the attributes of one or two regions of interest, rather than a description of the entire image. In order to make largescale retrieval feasible, we index the blob descriptions using a tree. Because indexing in the highdimensional feature space is computationally prohibitive, we use a lowerrank approximation to the highdimensional distance. Experiments show encouraging results for both querying and indexing. 1 Introduction From a user's point of view, the performance of an information retrieval system can be measured by the quality and speed with which it answers the user's information need. Several factors contribute to overall performance:  the time required to run each individual query,  the quality (precision/recall) of each i...
Unsupervised learning of finite mixture models
 IEEE Transactions on pattern analysis and machine intelligence
, 2002
"... AbstractÐThis paper proposes an unsupervised algorithm for learning a finite mixture model from multivariate data. The adjective ªunsupervisedº is justified by two properties of the algorithm: 1) it is capable of selecting the number of components and 2) unlike the standard expectationmaximization ..."
Abstract

Cited by 267 (20 self)
 Add to MetaCart
AbstractÐThis paper proposes an unsupervised algorithm for learning a finite mixture model from multivariate data. The adjective ªunsupervisedº is justified by two properties of the algorithm: 1) it is capable of selecting the number of components and 2) unlike the standard expectationmaximization (EM) algorithm, it does not require careful initialization. The proposed method also avoids another drawback of EM for mixture fitting: the possibility of convergence toward a singular estimate at the boundary of the parameter space. The novelty of our approach is that we do not use a model selection criterion to choose one among a set of preestimated candidate models; instead, we seamlessly integrate estimation and model selection in a single algorithm. Our technique can be applied to any type of parametric mixture model for which it is possible to write an EM algorithm; in this paper, we illustrate it with experiments involving Gaussian mixtures. These experiments testify for the good performance of our approach. Index TermsÐFinite mixtures, unsupervised learning, model selection, minimum message length criterion, Bayesian methods, expectationmaximization algorithm, clustering. æ 1
SPRINT: A scalable parallel classifier for data mining
, 1996
"... Classification is an important data mining problem. Although classification is a wellstudied problem, most of the current classification algorithms require that all or a portion of the the entire dataset remain permanently in memory. This limits their suitability for mining over large databases. ..."
Abstract

Cited by 250 (7 self)
 Add to MetaCart
Classification is an important data mining problem. Although classification is a wellstudied problem, most of the current classification algorithms require that all or a portion of the the entire dataset remain permanently in memory. This limits their suitability for mining over large databases. We present a new decisiontreebased classification algorithm, called SPRINT that removes all of the memory restrictions, and is fast and scalable. The algorithm has also been designed to be easily parallelized, allowing many processors to work together to build a single consistent model. This parallelization, also presented here, exhibits excellent scalability as well. The combination of these characteristics makes the proposed algorithm an ideal tool for data mining. 1
Survey of clustering data mining techniques
, 2002
"... Accrue Software, Inc. Clustering is a division of data into groups of similar objects. Representing the data by fewer clusters necessarily loses certain fine details, but achieves simplification. It models data by its clusters. Data modeling puts clustering in a historical perspective rooted in math ..."
Abstract

Cited by 247 (0 self)
 Add to MetaCart
Accrue Software, Inc. Clustering is a division of data into groups of similar objects. Representing the data by fewer clusters necessarily loses certain fine details, but achieves simplification. It models data by its clusters. Data modeling puts clustering in a historical perspective rooted in mathematics, statistics, and numerical analysis. From a machine learning perspective clusters correspond to hidden patterns, the search for clusters is unsupervised learning, and the resulting system represents a data concept. From a practical perspective clustering plays an outstanding role in data mining applications such as scientific data exploration, information retrieval and text mining, spatial database applications, Web analysis, CRM, marketing, medical diagnostics, computational biology, and many others. Clustering is the subject of active research in several fields such as statistics, pattern recognition, and machine learning. This survey focuses on clustering in data mining. Data mining adds to clustering the complications of very large datasets with very many attributes of different types. This imposes unique
Adaptive Wavelet Thresholding for Image Denoising and Compression
 IEEE TRANSACTIONS ON IMAGE PROCESSING
, 2000
"... The first part of this paper proposes an adaptive, datadriven threshold for image denoising via wavelet softthresholding. The threshold is derived in a Bayesian framework, and the prior used on the wavelet coefficients is the generalized Gaussian distribution (GGD) widely used in image processing ..."
Abstract

Cited by 230 (4 self)
 Add to MetaCart
The first part of this paper proposes an adaptive, datadriven threshold for image denoising via wavelet softthresholding. The threshold is derived in a Bayesian framework, and the prior used on the wavelet coefficients is the generalized Gaussian distribution (GGD) widely used in image processing applications. The proposed threshold is simple and closedform, and it is adaptive to each subband because it depends on datadriven estimates of the parameters. Experimental results show that the proposed method, called BayesShrink, is typically within 5% of the MSE of the best softthresholding benchmark with the image assumed known. It also outperforms Donoho and Johnstone's SureShrink most of the time. The second part
SLIQ: A Fast Scalable Classifier for Data Mining
, 1996
"... . Classification is an important problem in the emerging field of data mining. Although classification has been studied extensively in the past, most of the classification algorithms are designed only for memoryresident data, thus limiting their suitability for data mining large data sets. This pap ..."
Abstract

Cited by 190 (8 self)
 Add to MetaCart
. Classification is an important problem in the emerging field of data mining. Although classification has been studied extensively in the past, most of the classification algorithms are designed only for memoryresident data, thus limiting their suitability for data mining large data sets. This paper discusses issues in building a scalable classifier and presents the design of SLIQ 1 , a new classifier. SLIQ is a decision tree classifier that can handle both numeric and categorical attributes. It uses a novel presorting technique in the treegrowth phase. This sorting procedure is integrated with a breadthfirst tree growing strategy to enable classification of diskresident datasets. SLIQ also uses a new treepruning algorithm that is inexpensive, and results in compact and accurate trees. The combination of these techniques enables SLIQ to scale for large data sets and classify data sets irrespective of the number of classes, attributes, and examples (records), thus making it an ...