Results 1  10
of
66
External Memory Algorithms and Data Structures
, 1998
"... Data sets in large applications are often too massive to fit completely inside the computer's internal memory. The resulting input/output communication (or I/O) between fast internal memory and slower external memory (such as disks) can be a major performance bottleneck. In this paper, we surve ..."
Abstract

Cited by 350 (25 self)
 Add to MetaCart
(Show Context)
Data sets in large applications are often too massive to fit completely inside the computer's internal memory. The resulting input/output communication (or I/O) between fast internal memory and slower external memory (such as disks) can be a major performance bottleneck. In this paper, we survey the state of the art in the design and analysis of external memory algorithms and data structures (which are sometimes referred to as "EM" or "I/O" or "outofcore" algorithms and data structures). EM algorithms and data structures are often designed and analyzed using the parallel disk model (PDM). The three machineindependent measures of performance in PDM are the number of I/O operations, the CPU time, and the amount of disk space. PDM allows for multiple disks (or disk arrays) and parallel CPUs, and it can be generalized to handle tertiary storage and hierarchical memory. We discuss several important paradigms for how to solve batched and online problems efficiently in external memory. Programming tools and environments are available for simplifying the programming task. The TPIE system (Transparent Parallel I/O programming Environment) is both easy to use and efficient in terms of execution speed. We report on some experiments using TPIE in the domain of spatial databases. The newly developed EM algorithms and data structures that incorporate the paradigms we discuss are significantly faster than methods currently used in practice.
Asymptotically Tight Bounds for Performing BMMC Permutations on Parallel Disk Systems
, 1994
"... This paper presents asymptotically equal lower and upper bounds for the number of parallel I/O operations required to perform bitmatrixmultiply/complement (BMMC) permutations on the Parallel Disk Model proposed by Vitter and Shriver. A BMMC permutation maps a source index to a target index by an a ..."
Abstract

Cited by 61 (18 self)
 Add to MetaCart
This paper presents asymptotically equal lower and upper bounds for the number of parallel I/O operations required to perform bitmatrixmultiply/complement (BMMC) permutations on the Parallel Disk Model proposed by Vitter and Shriver. A BMMC permutation maps a source index to a target index by an affine transformation over GF (2), where the source and target indices are treated as bit vectors. The class of BMMC permutations includes many common permutations, such as matrix transposition (when dimensions are powers of 2), bitreversal permutations, vectorreversal permutations, hypercube permutations, matrix reblocking, Graycode permutations, and inverse Graycode permutations. The upper bound improves upon the asymptotic bound in the previous best known BMMC algorithm and upon the constant factor in the previous best known bitpermute/complement (BPC) permutation algorithm. The algorithm achieving the upper bound uses basic linearalgebra techniques to factor the characteristic matrix...
Fast Concurrent Access to Parallel Disks
"... High performance applications involving large data sets require the efficient and flexible use of multiple disks. In an external memory machine with D parallel, independent disks, only one block can be accessed on each disk in one I/O step. This restriction leads to a load balancing problem that is ..."
Abstract

Cited by 58 (13 self)
 Add to MetaCart
High performance applications involving large data sets require the efficient and flexible use of multiple disks. In an external memory machine with D parallel, independent disks, only one block can be accessed on each disk in one I/O step. This restriction leads to a load balancing problem that is perhaps the main inhibitor for the efficient adaptation of singledisk external memory algorithms to multiple disks. We solve this problem for arbitrary access patterns by randomly mapping blocks of a logical address space to the disks. We show that a shared buffer of O(D) blocks suffices to support efficient writing. The analysis uses the properties of negative association to handle dependencies between the random variables involved. This approach might be of independent interest for probabilistic analysis in general. If two randomly allocated copies of each block exist, N arbitrary blocks can be read within dN=De + 1 I/O steps with high probability. The redundancy can be further reduced from 2 to 1 + 1=r for any integer r without a big impact on reading efficiency. From the point of view of external memory models, these results rehabilitate Aggarwal and Vitter's "singledisk multihead" model [1] that allows access to D arbitrary blocks in each I/O step. This powerful model can be emulated on the physically more realistic independent disk model [2] with small constant overhead factors. Parallel disk external memory algorithms can therefore be developed in the multihead model first. The emulation result can then be applied directly or further refinements can be added.
Fast Priority Queues for Cached Memory
 ACM Journal of Experimental Algorithmics
, 1999
"... This paper advocates the adaption of external memory algorithms to this purpose. This idea and the practical issues involved are exemplified by engineering a fast priority queue suited to external memory and cached memory that is based on kway merging. It improves previous external memory algorithm ..."
Abstract

Cited by 54 (8 self)
 Add to MetaCart
(Show Context)
This paper advocates the adaption of external memory algorithms to this purpose. This idea and the practical issues involved are exemplified by engineering a fast priority queue suited to external memory and cached memory that is based on kway merging. It improves previous external memory algorithms by constant factors crucial for transferring it to cached memory. Running in the cache hierarchy of a workstation the algorithm is at least two times faster than an optimized implementation of binary heaps and 4ary heaps for large inputs
Towards a theory of cacheefficient algorithms
 PROCEEDINGS OF THE SYMPOSIUM ON DISCRETE
, 2000
"... We present a model that enables us to analyze the running time of an algorithm on a computer with a memory hierarchy with limited associativity, in terms of various cache parameters. Our cache model, an extension of Aggarwal and Vitter’s I/O model, enables us to establish useful relationships betw ..."
Abstract

Cited by 53 (3 self)
 Add to MetaCart
We present a model that enables us to analyze the running time of an algorithm on a computer with a memory hierarchy with limited associativity, in terms of various cache parameters. Our cache model, an extension of Aggarwal and Vitter’s I/O model, enables us to establish useful relationships between the cache complexity and the I/O complexity of computations. As a corollary, we obtain cacheefficient algorithms in the singlelevel cache model for fundamental problems like sorting, FFT, and an important subclass of permutations. We also analyze the averagecase cache behavior of mergesort, show that ignoring associativity concerns could lead to inferior performance, and present supporting experimental evidence. We further extend our model to multiple levels of cache with limited associativity and present optimal algorithms for matrix transpose and sorting. Our techniques may be used for systematic
STXXL: Standard template library for XXL data sets
 In: Proc. of ESA 2005. Volume 3669 of LNCS
, 2005
"... for processing huge data sets that can fit only on hard disks. It supports parallel disks, overlapping between disk I/O and computation and it is the first I/Oefficient algorithm library that supports the pipelining technique that can save more than half of the I/Os. STXXL has been applied both in ..."
Abstract

Cited by 50 (5 self)
 Add to MetaCart
for processing huge data sets that can fit only on hard disks. It supports parallel disks, overlapping between disk I/O and computation and it is the first I/Oefficient algorithm library that supports the pipelining technique that can save more than half of the I/Os. STXXL has been applied both in academic and industrial environments for a range of problems including text processing, graph algorithms, computational geometry, gaussian elimination, visualization, and analysis of microscopic images, differential cryptographic analysis, etc. The performance of STXXL and its applications is evaluated on synthetic and realworld inputs. We present the design of the library, how its performance features are supported, and demonstrate how the library integrates with STL. KEY WORDS: very large data sets; software library; C++ standard template library; algorithm engineering 1.
Efficient ExternalMemory Data Structures and Applications
, 1996
"... In this thesis we study the Input/Output (I/O) complexity of largescale problems arising e.g. in the areas of database systems, geographic information systems, VLSI design systems and computer graphics, and design I/Oefficient algorithms for them. A general theme in our work is to design I/Oeffic ..."
Abstract

Cited by 39 (12 self)
 Add to MetaCart
(Show Context)
In this thesis we study the Input/Output (I/O) complexity of largescale problems arising e.g. in the areas of database systems, geographic information systems, VLSI design systems and computer graphics, and design I/Oefficient algorithms for them. A general theme in our work is to design I/Oefficient algorithms through the design of I/Oefficient data structures. One of our philosophies is to try to isolate all the I/O specific parts of an algorithm in the data structures, that is, to try to design I/O algorithms from internal memory algorithms by exchanging the data structures used in internal memory with their external memory counterparts. The results in the thesis include a technique for transforming an internal memory tree data structure into an external data structure which can be used in a batched dynamic setting, that is, a setting where we for example do not require that the result of a search operation is returned immediately. Using this technique we develop batched dynamic external versions of the (onedimensional) rangetree and the segmenttree and we develop an external priority queue. Following our general philosophy we show how these structures can be used in standard internal memory sorting algorithms
Quasirandom Rumor Spreading
 In Proc. of SODA’08
, 2008
"... We propose and analyse a quasirandom analogue to the classical push model for disseminating information in networks (“randomized rumor spreading”). In the classical model, in each round each informed node chooses a neighbor at random and informs it. Results of Frieze and Grimmett (Discrete Appl. Mat ..."
Abstract

Cited by 39 (13 self)
 Add to MetaCart
We propose and analyse a quasirandom analogue to the classical push model for disseminating information in networks (“randomized rumor spreading”). In the classical model, in each round each informed node chooses a neighbor at random and informs it. Results of Frieze and Grimmett (Discrete Appl. Math. 1985) show that this simple protocol succeeds in spreading a rumor from one node of a complete graph to all others within O(log n) rounds. For the network being a hypercube or a random graph G(n, p) with p ≥ (1+ε)(log n)/n, also O(log n) rounds suffice (Feige, Peleg, Raghavan, and Upfal, Random Struct. Algorithms 1990). In the quasirandom model, we assume that each node has a (cyclic) list of its neighbors. Once informed, it starts at a random position of the list, but from then on informs its neighbors in the order of the list. Surprisingly, irrespective of the orders of the lists, the above mentioned bounds still hold. In addition, we also show a O(log n) bound for sparsely connected random graphs G(n, p) with p = (log n+f(n))/n, where f(n) → ∞ and f(n) = O(log log n). Here, the classical model needs Θ(log 2 (n)) rounds. Hence the quasirandom model achieves similar or better broadcasting times with a greatly reduced use of random bits.
ExternalMemory Algorithms with Applications in Geographic Information Systems
 Algorithmic Foundations of GIS
, 1997
"... In the design of algorithms for largescale applications it is essential to consider the problem of minimizing Input/Output (I/O) communication. Geographical information systems (GIS) are good examples of such largescale applications as they frequently handle huge amounts of spatial data. In this n ..."
Abstract

Cited by 29 (9 self)
 Add to MetaCart
(Show Context)
In the design of algorithms for largescale applications it is essential to consider the problem of minimizing Input/Output (I/O) communication. Geographical information systems (GIS) are good examples of such largescale applications as they frequently handle huge amounts of spatial data. In this note we survey the recent developments in externalmemory algorithms with applications in GIS. First we discuss the AggarwalVitter I/Omodel and illustrate why normal internalmemory algorithms for even very simple problems can perform terribly in an I/Oenvironment. Then we describe the fundamental paradigms for designing I/Oefficient algorithms by using them to design efficient sorting algorithms. We then go on and survey externalmemory algorithms for computational geometry problems  with special emphasis on problems with applications in GIS  and techniques for designing such algorithms: Using the orthogonal line segment intersection problem we illustrate the distributionsweeping and ...
CacheEfficient Matrix Transposition
"... We investigate the memory system performance of several algorithms for transposing an N N matrix inplace, where N is large. Specifically, we investigate the relative contributions of the data cache, the translation lookaside buffer, register tiling, and the array layout function to the overall runn ..."
Abstract

Cited by 27 (1 self)
 Add to MetaCart
We investigate the memory system performance of several algorithms for transposing an N N matrix inplace, where N is large. Specifically, we investigate the relative contributions of the data cache, the translation lookaside buffer, register tiling, and the array layout function to the overall running time of the algorithms. We use various memory models to capture and analyze the effect of various facets of cache memory architecture that guide the choice of a particular algorithm, and attempt to experimentally validate the predictions of the model. Our major conclusions are as follows: limited associativity in the mapping from main memory addresses to cache sets can significantly degrade running time; the limited number of TLB entries can easily lead to thrashing; the fanciest optimal algorithms are not competitive on real machines even at fairly large problem sizes unless cache miss penalties are quite high; lowlevel performance tuning “hacks”, such as register tiling and array alignment, can significantly distort the effects of improved algorithms; and hierarchical nonlinear layouts are inherently superior to the standard canonical layouts (such as row or columnmajor) for
this problem.