Results 1  10
of
14
Extending the System T_0 of explicit mathematics: the limit and Mahlo axioms
"... In this paper we discuss extensions of Feferman's theory T_0 for explicit mathematics by the socalled limit and Mahlo axioms and present a novel approach to constructing natural recusiontheoretic models for (fairly strong) systems of explicit mathematics which is based on nonmonotone inductive def ..."
Abstract

Cited by 13 (8 self)
 Add to MetaCart
In this paper we discuss extensions of Feferman's theory T_0 for explicit mathematics by the socalled limit and Mahlo axioms and present a novel approach to constructing natural recusiontheoretic models for (fairly strong) systems of explicit mathematics which is based on nonmonotone inductive definitions.
Universes in Explicit Mathematics
 Annals of Pure and Applied Logic
, 1999
"... This paper deals with universes in explicit mathematics. After introducing some basic definitions, the limit axiom and possible ordering principles for universes are discussed. Later, we turn to least universes, strictness and name induction. Special emphasis is put on theories for explicit mathemat ..."
Abstract

Cited by 8 (5 self)
 Add to MetaCart
This paper deals with universes in explicit mathematics. After introducing some basic definitions, the limit axiom and possible ordering principles for universes are discussed. Later, we turn to least universes, strictness and name induction. Special emphasis is put on theories for explicit mathematics with universes which are prooftheoretically equivalent to Feferman's T 0 . 1 Introduction In some form or another, universes play an important role in many systems of set theory and higher order arithmetic, in various formalizations of constructive mathematics and in logics for computation. One aspect of universes is that they expand the set or type formation principles in a natural and perspicuous way and provide greater expressive power and prooftheoretic strength. The general idea behind universes is quite simple: suppose that we are given a formal system Th comprising certain set (or type) existence principles which are justified on specific philosophical grounds. Then it may be a...
Elementary explicit types and polynomial time operations
, 2008
"... This paper studies systems of explicit mathematics as introduced by Feferman [9, 11]. In particular, we propose weak explicit type systems with a restricted form of elementary comprehension whose provably terminating operations coincide with the functions on binary words that are computable in polyn ..."
Abstract

Cited by 6 (5 self)
 Add to MetaCart
This paper studies systems of explicit mathematics as introduced by Feferman [9, 11]. In particular, we propose weak explicit type systems with a restricted form of elementary comprehension whose provably terminating operations coincide with the functions on binary words that are computable in polynomial time. The systems considered are natural extensions of the firstorder applicative theories introduced in
First Steps Into Metapredicativity in Explicit Mathematics
, 1999
"... The system EMU of explicit mathematics incorporates the uniform construction of universes. In this paper we give a prooftheoretic treatment of EMU and show that it corresponds to transfinite hierarchies of fixed points of positive arithmetic operators, where the length of these fixed point hierarc ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
The system EMU of explicit mathematics incorporates the uniform construction of universes. In this paper we give a prooftheoretic treatment of EMU and show that it corresponds to transfinite hierarchies of fixed points of positive arithmetic operators, where the length of these fixed point hierarchies is bounded by # 0 . 1 Introduction Metapredicativity is a new general term in proof theory which describes the analysis and study of formal systems whose prooftheoretic strength is beyond the FefermanSchutte ordinal # 0 but which are nevertheless amenable to purely predicative methods. Typical examples of formal systems which are apt for scaling the initial part of metapredicativity are the transfinitely iterated fixed point theories # ID # whose detailed prooftheoretic analysis is given by Jager, Kahle, Setzer and Strahm in [18]. In this paper we assume familiarity with [18]. For natural extensions of Friedman's ATR that can be measured against transfinitely iterated fixed point ...
Realization of analysis into Explicit Mathematics
 The Journal of Symbolic Logic
, 2000
"... We define a novel interpretation R of second order arithmetic into Explicit Mathematics. As a di#erence from standard Dinterpretation, which was used before and was shown to interpret only subsystems prooftheoretically weaker than T0 , our interpretation can reach the full strength of T0 . The ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
We define a novel interpretation R of second order arithmetic into Explicit Mathematics. As a di#erence from standard Dinterpretation, which was used before and was shown to interpret only subsystems prooftheoretically weaker than T0 , our interpretation can reach the full strength of T0 . The Rinterpretation is an adaptation of Kleene's recursive realizability, and is applicable only to intuitionistic theories. Introduction Systems of Explicit Mathematics were introduced by S. Feferman in the 70es as a logical framework for Bishopstyle constructive mathematics (see [Fef75], [Fef79]). In [Fef79] he gave an embedding of the basic theory T 0 into a subsystem # 1 2 CA+BI of 2nd order arithmetic and conjectured that the converse also holds. In [Ja83] G. Jager carried out a necessary wellordering proof in T 0 , which together with [JP82] completed its prooftheoretical analysis and established prooftheoretic equivalence of the system of Explicit Mathematics T 0 , system o...
Realization of Constructive Set Theory into Explicit Mathematics: a lower bound for impredicative Mahlo universe
 Transactions American Math. Soc
, 2000
"... We define a realizability interpretation of Aczel's Constructive Set Theory CZF into Explicit Mathematics. The final results are that CZF extended by Mahlo principles is realizable in corresponding extensions of T0 , thus providing relative lower bounds for the prooftheoretic strength of the latter ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
We define a realizability interpretation of Aczel's Constructive Set Theory CZF into Explicit Mathematics. The final results are that CZF extended by Mahlo principles is realizable in corresponding extensions of T0 , thus providing relative lower bounds for the prooftheoretic strength of the latter. Introduction Several di#erent frameworks have been founded in the 70es aiming to give a foundation for constructive mathematics. The most welldeveloped of them nowadays are MartinLof type theory, Aczel's constructive set theory, and Feferman's explicit mathematics. While constructive set theory was built to have an immediate type interpretation, no theory stronger than # 1 2 CA, which prooftheoretically is still far below the basic system T 0 of Explicit Mathematics, have been shown up to now to be directly embeddable into explicit systems. It also yielded that the only method for establishing lower bounds for T 0 and its extensions remained to be wellordering proofs. This omissi...
Weak theories of operations and types
"... This is a survey paper on various weak systems of Feferman’s explicit mathematics and their proof theory. The strength of the systems considered in measured in terms of their provably terminating operations typically belonging to some natural classes of computational time or space complexity. Keywor ..."
Abstract

Cited by 4 (3 self)
 Add to MetaCart
This is a survey paper on various weak systems of Feferman’s explicit mathematics and their proof theory. The strength of the systems considered in measured in terms of their provably terminating operations typically belonging to some natural classes of computational time or space complexity. Keywords: Proof theory, Feferman’s explicit mathematics, applicative theories, higher types, types and names, partial truth, feasible operations 1
A Theory of Explicit Mathematics Equivalent to ID_1
"... We show that the addition of name induction to the theory EETJ + (LEM I N ) of explicit elementary types with join yields a theory prooftheoretically equivalent to ID_1. ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
We show that the addition of name induction to the theory EETJ + (LEM I N ) of explicit elementary types with join yields a theory prooftheoretically equivalent to ID_1.
Extending the system T 0 of explicit mathematics: the limit and Mahlo axioms
"... In this paper we discuss extensions of Feferman's theory T 0 for explicit mathematics by the socalled limit and Mahlo axioms and present a novel approach to constructing natural recusiontheoretic models for (fairly strong) systems of explicit mathematics which is based on nonmonotone inductive def ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
In this paper we discuss extensions of Feferman's theory T 0 for explicit mathematics by the socalled limit and Mahlo axioms and present a novel approach to constructing natural recusiontheoretic models for (fairly strong) systems of explicit mathematics which is based on nonmonotone inductive definitions. 1 Introduction The purpose of this paper is twofold: our first aim is to discuss the extensions of Feferman's theory T 0 for explicit mathematics by the socalled limit and Mahlo axioms; secondly, we want to present a novel approach to constructing natural recusiontheoretic models for (fairly strong) systems of explicit mathematics which is based on nonmonotone inductive definitions. Subsystems of second order arithmetic and set theory dealing with or describing a recursively inaccessible or Mahlo universe play an important role in proof theory for quite some time. In this context we have to mention the theories (# 1 2 CA) + (BI) and KPi (cf. e.g. Jager [8]) whose least standar...
Impredicative Overloading in Explicit Mathematics
, 2000
"... In this article we introduce the system OTN of explicit mathematics based on elementary separation, product, join and weak power types. We present a settheoretical model for OTN, and we develop in OTN a theory of impredicative overloading. Together this yields a solution to the problem of impredica ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
In this article we introduce the system OTN of explicit mathematics based on elementary separation, product, join and weak power types. We present a settheoretical model for OTN, and we develop in OTN a theory of impredicative overloading. Together this yields a solution to the problem of impredicativity encountered in denotational semantics for overloading and latebinding. Further, our work provides a first example of an application of power types in explicit mathematics. Keywords: Objectoriented constructs, type structure, proof theory. 1 Introduction Overloading is an important concept in objectoriented programming. For example, it occurs when a method is redefined in a subclass or when a class provides several methods with the same name but with di#erent argument types. Theoretically speaking, overloading denotes the possibility that several functions f i with respective types S i # T i may be combined to a new overloaded function f of type {S i # T i } i#I . We then ...