Results 1 
7 of
7
An Industrial Strength Theorem Prover for a Logic Based on Common Lisp
 IEEE Transactions on Software Engineering
, 1997
"... ACL2 is a reimplemented extended version of Boyer and Moore's Nqthm and Kaufmann's PcNqthm, intended for large scale verification projects. This paper deals primarily with how we scaled up Nqthm's logic to an "industrial strength" programming language  namely, a large applicative subset of Comm ..."
Abstract

Cited by 107 (5 self)
 Add to MetaCart
ACL2 is a reimplemented extended version of Boyer and Moore's Nqthm and Kaufmann's PcNqthm, intended for large scale verification projects. This paper deals primarily with how we scaled up Nqthm's logic to an "industrial strength" programming language  namely, a large applicative subset of Common Lisp  while preserving the use of total functions within the logic. This makes it possible to run formal models efficiently while keeping the logic simple. We enumerate many other important features of ACL2 and we briefly summarize two industrial applications: a model of the Motorola CAP digital signal processing chip and the proof of the correctness of the kernel of the floating point division algorithm on the AMD5K 86 microprocessor by Advanced Micro Devices, Inc.
ACL2 Theorems about Commercial Microprocessors
, 1996
"... ACL2 is a mechanized mathematical logic intended for use in specifying and proving properties of computing machines. In two independent projects, industrial engineers have collaborated with researchers at Computational Logic, Inc. (CLI), to use ACL2 to model and prove properties of stateoftheart ..."
Abstract

Cited by 68 (14 self)
 Add to MetaCart
ACL2 is a mechanized mathematical logic intended for use in specifying and proving properties of computing machines. In two independent projects, industrial engineers have collaborated with researchers at Computational Logic, Inc. (CLI), to use ACL2 to model and prove properties of stateoftheart commercial microprocessors prior to fabrication. In the first project, Motorola, Inc., and CLI collaborated to specify Motorola's complex arithmetic processor (CAP), a singlechip, digital signal processor (DSP) optimized for communications signal processing. Using the specification, we proved the correctness of several CAP microcode programs. The second industrial collaboration involving ACL2 was between Advanced Micro Devices, Inc. (AMD) and CLI. In this work we proved the correctness of the kernel of the floatingpoint division operation on AMD's first Pentiumclass microprocessor, the AMD5K 86. In this paper, we discuss ACL2 and these industrial applications, with particular attention ...
Structured Theory Development for a Mechanized Logic
 Journal of Automated Reasoning
, 1999
"... Experience has shown that large or multiuser interactive proof efforts can benefit significantly from structuring mechanisms, much like those available in many modern programming languages. Such a mechanism can allow some lemmas and definitions to be exported, and others not. In this paper we addre ..."
Abstract

Cited by 48 (14 self)
 Add to MetaCart
Experience has shown that large or multiuser interactive proof efforts can benefit significantly from structuring mechanisms, much like those available in many modern programming languages. Such a mechanism can allow some lemmas and definitions to be exported, and others not. In this paper we address two such structuring mechanisms for the ACL2 theorem prover: encapsulation and books. After presenting an introduction to ACL2, this paper justifies the implementation of ACL2's structuring mechanisms and, more generally, formulates and proves highlevel correctness properties of ACL2. The issues in the present paper are relevant not only for ACL2 but also for other theoremproving environments.
Partial Functions in ACL2
 Journal of Automated Reasoning
"... We describe a macro for introducing \partial functions" into ACL2, i.e., functions not dened everywhere. The function \denitions" are actually admitted via the encapsulation principle. We discuss the basic issues surrounding partial functions in ACL2 and illustrate theorems that can be proved ab ..."
Abstract

Cited by 31 (7 self)
 Add to MetaCart
We describe a macro for introducing \partial functions" into ACL2, i.e., functions not dened everywhere. The function \denitions" are actually admitted via the encapsulation principle. We discuss the basic issues surrounding partial functions in ACL2 and illustrate theorems that can be proved about such functions.
A Mechanically Checked Proof of a Multiprocessor Result via a Uniprocessor View
 Formal Methods in System Design
, 1999
"... We describe a mechanically checked correctness proof for a system of n processes, each running a simple, nonblocking counter algorithm. We prove that if the system runs longer than 5n steps, the counter is increased. The theorem is formalized in applicative Common Lisp and proved with the ACL2 the ..."
Abstract

Cited by 14 (6 self)
 Add to MetaCart
We describe a mechanically checked correctness proof for a system of n processes, each running a simple, nonblocking counter algorithm. We prove that if the system runs longer than 5n steps, the counter is increased. The theorem is formalized in applicative Common Lisp and proved with the ACL2 theorem prover. The value of this paper lies not so much in the trivial algorithm addressed as in the method used to prove it correct. The method allows one to reason accurately about the behavior of a concurrent, multiprocess system by reasoning about the sequential computation carried out by a selected process, against a memory that is changed externally. Indeed, we prove general lemmas that allow shifting between the multiprocess and uniprocess views. We prove a safety property using a multiprocess view, project the property to a uniprocess view, and then prove a global progress property via a local, sequential computation argument. 1 Informal Discussion of the Problem Consider a system of ...
SingleThreaded Objects in ACL2
 Practical Aspects of Declarative Languages (PADL), volume 2257 of LNCS
, 1999
"... ACL2 is a firstorder applicative programming language based on Common Lisp. It is also a mathematical logic for which a mechanical theoremprover has been implemented in the style of the BoyerMoore theorem prover. The ACL2 system is used primarily in the modeling and verification of computer hardwa ..."
Abstract

Cited by 10 (2 self)
 Add to MetaCart
ACL2 is a firstorder applicative programming language based on Common Lisp. It is also a mathematical logic for which a mechanical theoremprover has been implemented in the style of the BoyerMoore theorem prover. The ACL2 system is used primarily in the modeling and verification of computer hardware and software, where the executability of the language allows models to be used as prototype designs or "simulators." To support efficient execution of certain kinds of models, especially models of microprocessors, ACL2 provides "singlethreaded objects," structures with the usual "copy on write" applicative semantics but for which writes are implemented destructively. Syntactic restrictions insure consistency between the formal semantics and the implementation. The design of singlethreaded objects has been influenced both by the need to make execution efficient and the need to make proofs about them simple. We discuss the issues. 1 Background "ACL2" stands for "A Computational Logic for...
Ordinal arithmetic: Algorithms and mechanization
 Journal of Automated Reasoning
, 2006
"... Abstract. Termination proofs are of critical importance for establishing the correct behavior of both transformational and reactive computing systems. A general setting for establishing termination proofs involves the use of the ordinal numbers, an extension of the natural numbers into the transfini ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
Abstract. Termination proofs are of critical importance for establishing the correct behavior of both transformational and reactive computing systems. A general setting for establishing termination proofs involves the use of the ordinal numbers, an extension of the natural numbers into the transfinite which were introduced by Cantor in the nineteenth century and are at the core of modern set theory. We present the first comprehensive treatment of ordinal arithmetic on compact ordinal notations and give efficient algorithms for various operations, including addition, subtraction, multiplication, and exponentiation. Using the ACL2 theorem proving system, we implemented our ordinal arithmetic algorithms, mechanically verified their correctness, and developed a library of theorems that can be used to significantly automate reasoning involving the ordinals. To enable users of the ACL2 system to fully utilize our work required that we modify ACL2, e.g., we replaced the underlying representation of the ordinals and added a large library of definitions and theorems. Our modifications are available starting with ACL2 version 2.8. 1.