Results 1  10
of
186
Reasoning about beliefs and actions under computational resource constraints
 in Proceedings of the 1989 Workshop on Uncertainty and AI
, 1987
"... Although many investigators arm a desire to build reasoning systems that behave consistently with the axiomatic basis dened by probability theory and utility theory, limited resources for engineering and computation can make a complete normative analysis impossible. We attempt to move discussion be ..."
Abstract

Cited by 191 (20 self)
 Add to MetaCart
(Show Context)
Although many investigators arm a desire to build reasoning systems that behave consistently with the axiomatic basis dened by probability theory and utility theory, limited resources for engineering and computation can make a complete normative analysis impossible. We attempt to move discussion beyond the debate over the scope of problems that can be handled eectively to cases where it is clear that there are insucient computational resources to perform an analysis deemed as complete. Under these conditions, we stress the importance of considering the expected costs and benets of applying alternative approximation procedures and heuristics for computation and knowledge acquisition. We discuss how knowledge about the structure of user utility can be used to control value tradeos for tailoring inference to alternative contexts. We address the notion of realtime rationality, focusing on the application of knowledge about the expected timewiserenement abilities of reasoning strategies to balance the bene ts of additional computation with the costs of acting with a partial result. We discuss the benets of applying decision theory to control the solution of dicult problems given limitations and uncertainty in reasoning resources. 1
Decision Theory in Expert Systems and Artificial Intelligence
 International Journal of Approximate Reasoning
, 1988
"... Despite their different perspectives, artificial intelligence (AI) and the disciplines of decision science have common roots and strive for similar goals. This paper surveys the potential for addressing problems in representation, inference, knowledge engineering, and explanation within the decision ..."
Abstract

Cited by 95 (18 self)
 Add to MetaCart
(Show Context)
Despite their different perspectives, artificial intelligence (AI) and the disciplines of decision science have common roots and strive for similar goals. This paper surveys the potential for addressing problems in representation, inference, knowledge engineering, and explanation within the decisiontheoretic framework. Recent analyses of the restrictions of several traditional AI reasoning techniques, coupled with the development of more tractable and expressive decisiontheoretic representation and inference strategies, have stimulated renewed interest in decision theory and decision analysis. We describe early experience with simple probabilistic schemes for automated reasoning, review the dominant expertsystem paradigm, and survey some recent research at the crossroads of AI and decision science. In particular, we present the belief network and influence diagram representations. Finally, we discuss issues that have not been studied in detail within the expertsystems sett...
A principled approach to detecting surprising events in video
 in Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR
, 2005
"... Primates demonstrate unparalleled ability at rapidly orienting towards important events in complex dynamic environments. During rapid guidance of attention and gaze towards potential objects of interest or threats, often there is no time for detailed visual analysis. Thus, heuristic computations are ..."
Abstract

Cited by 86 (6 self)
 Add to MetaCart
(Show Context)
Primates demonstrate unparalleled ability at rapidly orienting towards important events in complex dynamic environments. During rapid guidance of attention and gaze towards potential objects of interest or threats, often there is no time for detailed visual analysis. Thus, heuristic computations are necessary to locate the most interesting events in quasi realtime. We present a new theory of sensory surprise, which provides a principled and computable shortcut to important information. We develop a model that computes instantaneous lowlevel surprise at every location in video streams. The algorithm significantly correlates with eye movements of two humans watching complex video clips, including television programs (17,936 frames, 2,152 saccadic gaze shifts). The system allows more sophisticated and timeconsuming image analysis to be efficiently focused onto the most surprising subsets of the incoming data. 1.
Toward normative expert systems: Part I. The Pathfinder project
 Methods of Information in Medicine
, 1992
"... ..."
(Show Context)
A hierarchical dirichlet language model
 Natural Language Engineering
, 1994
"... We discuss a hierarchical probabilistic model whose predictions are similar to those of the popular language modelling procedure known as 'smoothing'. A number of interesting differences from smoothing emerge. The insights gained from a probabilistic view of this problem point towards new ..."
Abstract

Cited by 83 (3 self)
 Add to MetaCart
(Show Context)
We discuss a hierarchical probabilistic model whose predictions are similar to those of the popular language modelling procedure known as 'smoothing'. A number of interesting differences from smoothing emerge. The insights gained from a probabilistic view of this problem point towards new directions for language modelling. The ideas of this paper are also applicable to other problems such as the modelling of triphomes in speech, and DNA and protein sequences in molecular biology. The new algorithm is compared with smoothing on a two million word corpus. The methods prove to be about equally accurate, with the hierarchical model using fewer computational resources. 1
Two views of belief: Belief as generalized probability and belief as evidence
, 1992
"... : Belief functions are mathematical objects defined to satisfy three axioms that look somewhat similar to the Kolmogorov axioms defining probability functions. We argue that there are (at least) two useful and quite different ways of understanding belief functions. The first is as a generalized prob ..."
Abstract

Cited by 78 (12 self)
 Add to MetaCart
: Belief functions are mathematical objects defined to satisfy three axioms that look somewhat similar to the Kolmogorov axioms defining probability functions. We argue that there are (at least) two useful and quite different ways of understanding belief functions. The first is as a generalized probability function (which technically corresponds to the inner measure induced by a probability function). The second is as a way of representing evidence. Evidence, in turn, can be understood as a mapping from probability functions to probability functions. It makes sense to think of updating a belief if we think of it as a generalized probability. On the other hand, it makes sense to combine two beliefs (using, say, Dempster's rule of combination) only if we think of the belief functions as representing evidence. Many previous papers have pointed out problems with the belief function approach; the claim of this paper is that these problems can be explained as a consequence of confounding the...
Online Bayes Point Machines
"... We present a new and simple algorithm for learning large margin classi ers that works in a truly online manner. The algorithm generates a linear classi er by averaging the weights associated with several perceptronlike algorithms run in parallel in order to approximate the Bayes point. A rand ..."
Abstract

Cited by 72 (3 self)
 Add to MetaCart
(Show Context)
We present a new and simple algorithm for learning large margin classi ers that works in a truly online manner. The algorithm generates a linear classi er by averaging the weights associated with several perceptronlike algorithms run in parallel in order to approximate the Bayes point. A random subsample of the incoming data stream is used to ensure diversity in the perceptron solutions. We experimentally study the algorithm's performance on online and batch learning settings.