Results 1 
3 of
3
On the design of CGAL a computational geometry algorithms library
 Softw. – Pract. Exp
, 1998
"... CGAL is a Computational Geometry Algorithms Library written in C++, which is being developed by research groups in Europe and Israel. The goal is to make the large body of geometric algorithms developed in the field of computational geometry available for industrial application. We discuss the major ..."
Abstract

Cited by 90 (15 self)
 Add to MetaCart
CGAL is a Computational Geometry Algorithms Library written in C++, which is being developed by research groups in Europe and Israel. The goal is to make the large body of geometric algorithms developed in the field of computational geometry available for industrial application. We discuss the major design goals for CGAL, which are correctness, flexibility, easeofuse, efficiency, and robustness, and present our approach to reach these goals. Generic programming using templates in C++ plays a central role in the architecture of CGAL. We give a short introduction to generic programming in C++, compare it to the objectoriented programming paradigm, and present examples where both paradigms are used effectively in CGAL. Moreover, we give an overview of the current structure of the CGALlibrary and consider software engineering aspects in the CGALproject. Copyright c ○ 1999 John Wiley & Sons, Ltd. KEY WORDS: computational geometry; software library; C++; generic programming;
Designing a Computational Geometry Algorithms Library
 Lecture Notes for Advanced School on Algorithmic Foundations of Geographic Information Systems, CISM
, 1996
"... Introduction Geometric problems arise in many areas. Computer graphics, robotics, manufacturing, and geographic information systems are some examples. Often the same geometric subproblems are to be solved. Hence a library providing solutions for core problems in geometric computing has a wide range ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
Introduction Geometric problems arise in many areas. Computer graphics, robotics, manufacturing, and geographic information systems are some examples. Often the same geometric subproblems are to be solved. Hence a library providing solutions for core problems in geometric computing has a wide range of applications and can be very useful. The success of LEDA [16], a library of efficient data types and algorithms, has shown that the existence of a library can make a tremendous difference for taking advanced techniques in data structures and algorithms from theory to practice. The field of computational geometry is now very close to a state where it can provide such a library of geometric algorithms. Over the past twenty years many algorithms for geometric problems have been developed by computational geometers. Many of these algorithms clearly have no direct impact for geometric computing in practice, because they are efficient compared to other solutions only for huge problem i
The CGAL Kernel: . . .
 PROC. 1ST ACM WORKSHOP ON APPL. COMPUT. GEOM., VOLUME 1148 OF LECTURE NOTES COMPUT. SCI
, 1996
"... ..."