Results 1 
4 of
4
A comparison of the SheraliAdams, LovászSchrijver and Lasserre relaxations for 01 programming
 Mathematics of Operations Research
, 2001
"... ..."
Semidefinite Representations for Finite Varieties
 MATHEMATICAL PROGRAMMING
, 2002
"... We consider the problem of minimizing a polynomial over a semialgebraic set defined by polynomial equalities and inequalities. When the polynomial equalities have a finite number of complex solutions and define a radical ideal we can reformulate this problem as a semidefinite programming prob ..."
Abstract

Cited by 37 (7 self)
 Add to MetaCart
We consider the problem of minimizing a polynomial over a semialgebraic set defined by polynomial equalities and inequalities. When the polynomial equalities have a finite number of complex solutions and define a radical ideal we can reformulate this problem as a semidefinite programming problem. This semidefinite program involves combinatorial moment matrices, which are matrices indexed by a basis of the quotient vector space R[x 1 , . . . , x n ]/I. Our arguments are elementary and extend known facts for the grid case including 0/1 and polynomial programming. They also relate to known algebraic tools for solving polynomial systems of equations with finitely many complex solutions. Semidefinite approximations can be constructed by considering truncated combinatorial moment matrices; rank conditions are given (in a grid case) that ensure that the approximation solves the original problem at optimality.
Lower Bound for the Number of Iterations in Semidefinite Hierarchies for the Cut Polytope
, 2002
"... Hierarchies of semidefinite relaxations for 01 polytopes have been constructed by Lasserre (2001a) and by Lovász and Schrijver (1991), permitting to find the cut polytope of a graph on n nodes in n steps. We show that iterations are needed for finding the cut polytope of the complete graph K n . ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
Hierarchies of semidefinite relaxations for 01 polytopes have been constructed by Lasserre (2001a) and by Lovász and Schrijver (1991), permitting to find the cut polytope of a graph on n nodes in n steps. We show that iterations are needed for finding the cut polytope of the complete graph K n .
Approximability and proof complexity
, 2012
"... This work is concerned with the proofcomplexity of certifying that optimization problems do not have good solutions. Specifically we consider boundeddegree “Sum of Squares ” (SOS) proofs, a powerful algebraic proof system introduced in 1999 by Grigoriev and Vorobjov. Work of Shor, Lasserre, and Pa ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
This work is concerned with the proofcomplexity of certifying that optimization problems do not have good solutions. Specifically we consider boundeddegree “Sum of Squares ” (SOS) proofs, a powerful algebraic proof system introduced in 1999 by Grigoriev and Vorobjov. Work of Shor, Lasserre, and Parrilo shows that this proof system is automatizable using semidefinite programming (SDP), meaning that any nvariable degreed proof can be found in time n O(d). Furthermore, the SDP is dual to the wellknown Lasserre SDP hierarchy, meaning that the “d/2round Lasserre value ” of an optimization problem is equal to the best bound provable using a degreed SOS proof. These ideas were exploited in a recent paper by Barak et al. (STOC 2012) which shows that the known “hard instances ” for the UniqueGames problem are in fact solved close to optimally by a constant level of the Lasserre SDP hierarchy. We continue the study of the power of SOS proofs in the context of difficult optimization problems. In particular, we show that the BalancedSeparator integrality gap instances proposed by Devanur et al. can have their optimal value certified by a degree4 SOS proof. The key ingredient is an SOS proof of the KKL Theorem. We also investigate the extent to which the Khot–Vishnoi MaxCut integrality gap instances can have their optimum value certified by an SOS proof. We show they can be certified to within a factor.952 (>.878) using a constantdegree proof. These investigations also raise an interesting mathematical question: is there a constantdegree SOS proof of the Central Limit Theorem?