Results 1  10
of
157
How bad is selfish routing?
 JOURNAL OF THE ACM
, 2002
"... We consider the problem of routing traffic to optimize the performance of a congested network. We are given a network, a rate of traffic between each pair of nodes, and a latency function for each edge specifying the time needed to traverse the edge given its congestion; the objective is to route t ..."
Abstract

Cited by 557 (28 self)
 Add to MetaCart
(Show Context)
We consider the problem of routing traffic to optimize the performance of a congested network. We are given a network, a rate of traffic between each pair of nodes, and a latency function for each edge specifying the time needed to traverse the edge given its congestion; the objective is to route traffic such that the sum of all travel times—the total latency—is minimized. In many settings, it may be expensive or impossible to regulate network traffic so as to implement an optimal assignment of routes. In the absence of regulation by some central authority, we assume that each network user routes its traffic on the minimumlatency path available to it, given the network congestion caused by the other users. In general such a “selfishly motivated ” assignment of traffic to paths will not minimize the total latency; hence, this lack of regulation carries the cost of decreased network performance. In this article, we quantify the degradation in network performance due to unregulated traffic. We prove that if the latency of each edge is a linear function of its congestion, then the total latency of the routes chosen by selfish network users is at most 4/3 times the minimum possible total latency (subject to the condition that all traffic must be routed). We also consider the more general setting in which edge latency functions are assumed only to be continuous and nondecreasing in the edge congestion. Here, the total
Competitive Routing in MultiUser Communication Networks
 IEEE/ACM Transactions on Networking
, 1993
"... We consider a communication network shared by several selfish users. Each user seeks to optimize its own performance by controlling the routing of its given flow demand, giving rise to a noncooperative game. We investigate the Nash equilibrium of such systems. For a twonode multiplelinks system, ..."
Abstract

Cited by 193 (21 self)
 Add to MetaCart
(Show Context)
We consider a communication network shared by several selfish users. Each user seeks to optimize its own performance by controlling the routing of its given flow demand, giving rise to a noncooperative game. We investigate the Nash equilibrium of such systems. For a twonode multiplelinks system, uniqueness of the Nash equilibrium is proved under reasonable convexity conditions. It is shown that this Nash equilibrium point possesses interesting monotonicity properties. For general networks, these convexity conditions are not sufficient for guaranteeing uniqueness, and a counter example is presented. Nonetheless, uniqueness of the Nash equilibrium for general topologies is established under various assumptions. Also with Sun Microsystems, Mountain View, CA 1 1 Introduction Traditional computer networks were designed with a single administrative domain in mind. That is, the network is designed and operated as a single entity with a single control objective. A single control object...
The price of anarchy is independent of the network topology
 JOURNAL OF COMPUTER AND SYSTEM SCIENCES
, 2002
"... We study the degradation in network performance caused by the selfish behavior of noncooperative network users. We consider a model of selfish routing in which the latency experienced by network traffic on an edge of the network is a function of the edge congestion, and network users are assumed to ..."
Abstract

Cited by 186 (16 self)
 Add to MetaCart
(Show Context)
We study the degradation in network performance caused by the selfish behavior of noncooperative network users. We consider a model of selfish routing in which the latency experienced by network traffic on an edge of the network is a function of the edge congestion, and network users are assumed to selfishly route traffic on minimumlatency paths. The quality of a routing of traffic is measured by the sum of travel times, also called the total latency. The outcome of selfish routing—a Nash equilibrium—does not in general minimize the total latency; hence, selfish behavior carries the cost of decreased network performance. We quantify this degradation in network performance via the price of anarchy, the worstpossible ratio between the total latency of a Nash equilibrium and of an optimal routing of the traffic. We show the price of anarchy is determined only by the simplest of networks. Specifically, we prove that under weak hypotheses on the class of allowable edge latency functions, the worstcase ratio between the total latency of a Nash equilibrium and of a minimumlatency routing for any multicommodity flow network is achieved by a singlecommodity
Potential Function Methods for Approximately Solving Linear Programming Problems: Theory and Practice
, 2001
"... After several decades of sustained research and testing, linear programming has evolved into a remarkably reliable, accurate and useful tool for handling industrial optimization problems. Yet, large problems arising from several concrete applications routinely defeat the very best linear programming ..."
Abstract

Cited by 123 (4 self)
 Add to MetaCart
After several decades of sustained research and testing, linear programming has evolved into a remarkably reliable, accurate and useful tool for handling industrial optimization problems. Yet, large problems arising from several concrete applications routinely defeat the very best linear programming codes, running on the fastest computing hardware. Moreover, this is a trend that may well continue and intensify, as problem sizes escalate and the need for fast algorithms becomes more stringent. Traditionally, the focus in optimization algorithms, and in particular, in algorithms for linear programming, has been to solve problems "to optimality." In concrete implementations, this has always meant the solution ofproblems to some finite accuracy (for example, eight digits). An alternative approach would be to explicitly, and rigorously, trade o# accuracy for speed. One motivating factor is that in many practical applications, quickly obtaining a partially accurate solution is much preferable to obtaining a very accurate solution very slowly. A secondary (and independent) consideration is that the input data in many practical applications has limited accuracy to begin with. During the last ten years, a new body ofresearch has emerged, which seeks to develop provably good approximation algorithms for classes of linear programming problems. This work both has roots in fundamental areas of mathematical programming and is also framed in the context ofthe modern theory ofalgorithms. The result ofthis work has been a family ofalgorithms with solid theoretical foundations and with growing experimental success. In this manuscript we will study these algorithms, starting with some ofthe very earliest examples, and through the latest theoretical and computational developments.
Stackelberg scheduling strategies
 In Proceedings of the 33rd Annual ACM Symposium on the Theory of Computing
, 2001
"... AbstractWe study the problem of optimizing the performance of a system shared by selfish, noncooperative users. We consider the concrete setting of scheduling jobs on a set of shared machines with loaddependent latency functions specifying the length of time necessary to complete a job; we measure ..."
Abstract

Cited by 114 (6 self)
 Add to MetaCart
(Show Context)
AbstractWe study the problem of optimizing the performance of a system shared by selfish, noncooperative users. We consider the concrete setting of scheduling jobs on a set of shared machines with loaddependent latency functions specifying the length of time necessary to complete a job; we measure system performance by the total latency of the system. Assigning jobs according to the selfish interests of individual users (who wish to minimize only the latency that their own jobs experience) typically results in suboptimal system performance. However, in many systems of this type there is a mixture of &quot;selfishly controlled &quot; and &quot;centrally controlled &quot; jobs; as the assignment of centrally controlled jobs will influence the subsequent actions by selfish users, we aspire to contain the degradation in system performance due to selfish behavior by scheduling the centrally controlled jobs in the best possible way. We formulate this goal as an optimization problem via Stackelberg games, games in which one player acts a leader (here, the centralized authority interested in optimizing system performance) and the rest as followers (the selfish users). The problem is then to compute a strategy for the leader (a Stackelberg strategy) that induces the followers to react in a way that (at least approximately) minimizes the total latency in the system. In this paper, we prove that it is NPhard to compute the optimal Stackelberg strategy and present simple strategies with provable performance guarantees. More precisely, we give a simple algorithm that computes a strategy inducing a job assignment with total latency no more than a constant times that of the optimal assignment of all of the jobs; in the absence of centrally controlled jobs and a Stackelberg strategy, no result of this type is possible. We also prove stronger performance guarantees in the special case where every machine latency function is linear in the machine load.
Pricing network edges for heterogeneous selfish users
 Proc. of STOC
, 2003
"... We study the negative consequences of selfish behavior in a congested network and economic means of influencing such behavior. We consider the model of selfish routing defined by Wardrop [30] and studied in a computer science context by Roughgarden and Tardos [26]. In this model, the latency experie ..."
Abstract

Cited by 97 (10 self)
 Add to MetaCart
We study the negative consequences of selfish behavior in a congested network and economic means of influencing such behavior. We consider the model of selfish routing defined by Wardrop [30] and studied in a computer science context by Roughgarden and Tardos [26]. In this model, the latency experienced by network traffic on an edge of the network is a function of the edge congestion, and network users are assumed to selfishly route traffic on minimumlatency paths. The quality of a routing of traffic is measured by the sum of travel times (the total latency). It is well known that the outcome of selfish routing (a Nash equilibrium) does not minimize the total latency and can be improved upon with coordination. An ancient strategy for improving the selfish solution is the principle of marginal cost pricing, which asserts that on each edge of the network, each network user on the edge should pay a tax offsetting the congestion effects caused by its presence. By pricing network edges according to this principle, the inefficiency of selfish routing can always be eradicated. This result, while fundamental, assumes a very strong homogeneity property: all network users are assumed to trade off time and money in an identical way. The guarantee also ignores both the algorithmic
Selfish Routing In Capacitated Networks
 MATHEMATICS OF OPERATIONS RESEARCH
, 2003
"... According to Wardrop's first principle, agents in a congested network choose their routes selfishly, a behavior that is captured by the Nash equilibrium of the underlying noncooperative game. A Nash equilibrium does not optimize any global criterion per se, and so there is no apparent reason wh ..."
Abstract

Cited by 82 (6 self)
 Add to MetaCart
According to Wardrop's first principle, agents in a congested network choose their routes selfishly, a behavior that is captured by the Nash equilibrium of the underlying noncooperative game. A Nash equilibrium does not optimize any global criterion per se, and so there is no apparent reason why it should be close to a solution of minimal total travel time, i.e. the system optimum. In this paper, we offer extensions of recent positive results on the efficiency of Nash equilibria in traffic networks. In contrast to prior work, we present results for networks with capacities and for latency functions that are nonconvex, nondifferentiable and even discontinuous. The inclusion of upper bounds on arc flows has early been recognized as an important means to provide a more accurate description of traffic flows. In this more general model, multiple Nash equilibria may exist and an arbitrary equilibrium does not need to be nearly efficient. Nonetheless, our main result shows that the best equilibrium is as efficient as in the model without capacities. Moreover, this holds true for broader classes of travel cost functions than considered hitherto.
How Much Can Taxes Help Selfish Routing?
 EC'03
, 2003
"... ... in networks. We consider a model of selfish routing in which the latency experienced by network tra#c on an edge of the network is a function of the edge congestion, and network users are assumed to selfishly route tra#c on minimumlatency paths. The quality of a routing of tra#c is historically ..."
Abstract

Cited by 68 (5 self)
 Add to MetaCart
(Show Context)
... in networks. We consider a model of selfish routing in which the latency experienced by network tra#c on an edge of the network is a function of the edge congestion, and network users are assumed to selfishly route tra#c on minimumlatency paths. The quality of a routing of tra#c is historically measured by the sum of all travel times, also called the total latency. It is well known
Competitive Routing in Networks with Polynomial Costs
, 2000
"... We study a class of noncooperative general topology networks shared by N users. Each user has a given flow which it has to ship from a source to a destination. We consider a class of polynomial link cost functions adopted originally in the context of road traffic modeling, and show that these costs ..."
Abstract

Cited by 67 (28 self)
 Add to MetaCart
We study a class of noncooperative general topology networks shared by N users. Each user has a given flow which it has to ship from a source to a destination. We consider a class of polynomial link cost functions adopted originally in the context of road traffic modeling, and show that these costs have appealing properties that lead to predictable and efficient network flows. In particular, we show that the Nash equilibrium is unique, and is moreover efficient. These properties make the polynomial cost structure attractive for traffic regulation and link pricing in telecommunication networks. We nally discuss the computation of the equilibrium in the special case of the affine cost structure for a topology of parallel links.
Designing networks for selfish users is hard
 In Proceedings of the 42nd Annual Symposium on Foundations of Computer Science
, 2001
"... Abstract We consider a directed network in which every edge possesses a latency function specifying the time needed to traverse the edge given its congestion. Selfish, noncooperative agents constitute the network traffic and wish to travel from a source s to a sink t as quickly as possible. Since th ..."
Abstract

Cited by 66 (8 self)
 Add to MetaCart
(Show Context)
Abstract We consider a directed network in which every edge possesses a latency function specifying the time needed to traverse the edge given its congestion. Selfish, noncooperative agents constitute the network traffic and wish to travel from a source s to a sink t as quickly as possible. Since the route chosen by one network user affects the congestion (and hence the latency) experienced by others, we model the problem as a noncooperative game. Assuming each agent controls only a negligible portion of the overall traffic, Nash equilibria in this noncooperative game correspond to st flows in which all flow paths have equal latency. A natural measure for the performance of a network used by selfish agents is the common latency experienced by each user in a Nash equilibrium. It is a counterintuitive but wellknown fact that removing edges from a network may improve its performance; the most famous example of this phenomenon is the socalled Braess's Paradox. This fact motivates the following network design problem: given such a network, which edges should be removed to obtain the best possible flow at Nash equilibrium? Equivalently, given a large network of candidate edges to be built, which subnetwork will exhibit the best performance when used selfishly? We give optimal inapproximability results and approximation algorithms for several network design problems of this type. For example, we prove that for networks with n vertices and continuous, nondecreasing latency functions, there is no approximation algorithm for this problem with approximation ratio less than n/2 (unless P = N P). We also prove this hardness result to be best possible by exhibiting an n/2approximation algorithm. For networks in which the latency of each edge is a linear function of the congestion, we prove that there is no ( 43 ffl)approximation algorithm for the problem (for any ffl> 0, unless P = N P); the existence of a 43approximation algorithm follows easily from existing work, proving this hardness result sharp. Moreover, we prove that an optimal approximation algorithm for these problems is what we call the trivial algorithm: given a network of candidate edges, build the entire network. A consequence of this result is that Braess's Paradox (even in its worstpossible manifestation) is impossible to detect efficiently.