Results 1  10
of
24
Domain Decomposition Algorithms With Small Overlap
, 1994
"... Numerical experiments have shown that twolevel Schwarz methods often perform very well even if the overlap between neighboring subregions is quite small. This is true to an even greater extent for a related algorithm, due to Barry Smith, where a Schwarz algorithm is applied to the reduced linear ..."
Abstract

Cited by 82 (11 self)
 Add to MetaCart
Numerical experiments have shown that twolevel Schwarz methods often perform very well even if the overlap between neighboring subregions is quite small. This is true to an even greater extent for a related algorithm, due to Barry Smith, where a Schwarz algorithm is applied to the reduced linear system of equations that remains after that the variables interior to the subregions have been eliminated. In this paper, a supporting theory is developed.
Overlapping Schwarz Methods On Unstructured Meshes Using NonMatching Coarse Grids
 Numer. Math
, 1996
"... . We consider two level overlapping Schwarz domain decomposition methods for solving the finite element problems that arise from discretizations of elliptic problems on general unstructured meshes in two and three dimensions. Standard finite element interpolation from the coarse to the fine grid may ..."
Abstract

Cited by 49 (17 self)
 Add to MetaCart
. We consider two level overlapping Schwarz domain decomposition methods for solving the finite element problems that arise from discretizations of elliptic problems on general unstructured meshes in two and three dimensions. Standard finite element interpolation from the coarse to the fine grid may be used. Our theory requires no assumption on the substructures which constitute the whole domain, so each substructure can be of arbitrary shape and of different size. The global coarse mesh is allowed to be nonnested to the fine grid on which the discrete problem is to be solved and both the coarse meshes and the fine meshes need not be quasiuniform. In addition, the domains defined by the fine and coarse grid need not be identical. The one important constraint is that the closure of the coarse grid must cover any portion of the fine grid boundary for which Neumann boundary conditions are given. In this general setting, our algorithms have the same optimal convergence rate of the usual ...
Some Nonoverlapping Domain Decomposition Methods
, 1998
"... . The purpose of this paper is to give a unified investigation of a class of nonoverlapping domain decomposition methods for solving secondorder elliptic problems in two and three dimensions. The methods under scrutiny fall into two major categories: the substructuringtype methods and the Neumann ..."
Abstract

Cited by 36 (6 self)
 Add to MetaCart
. The purpose of this paper is to give a unified investigation of a class of nonoverlapping domain decomposition methods for solving secondorder elliptic problems in two and three dimensions. The methods under scrutiny fall into two major categories: the substructuringtype methods and the NeumannNeumanntype methods. The basic framework used for analysis is the parallel subspace correction method or additive Schwarz method, and other technical tools include localglobal and globallocal techniques. The analyses for both two and threedimensional cases are carried out simultaneously. Some internal relationships between various algorithms are observed and several new variants of the algorithms are also derived. Key words. nonoverlapping domain decomposition, Schur complement, localglobal and globallocal techniques, jumps in coe#cients, substructuring, NeumannNeumann, balancing methods AMS subject classifications. 65N30, 65N55, 65F10 PII. S0036144596306800 1. Introduction. T...
A nonoverlapping domain decomposition method for Maxwellâ€™s equations in three dimensions
 SIAM J. Numer. Anal
"... Abstract. We propose a substructuring preconditioner for solving threedimensional elliptic equations with strongly discontinuous coefficients. The new preconditioner can be viewed as a variant of the classical substructuring preconditioner proposed by Bramble, Pasiack and Schatz (1989), but with muc ..."
Abstract

Cited by 35 (10 self)
 Add to MetaCart
Abstract. We propose a substructuring preconditioner for solving threedimensional elliptic equations with strongly discontinuous coefficients. The new preconditioner can be viewed as a variant of the classical substructuring preconditioner proposed by Bramble, Pasiack and Schatz (1989), but with much simpler coarse solvers. Though the condition number of the preconditioned system may not have a good bound, we are able to show that the convergence rate of the PCG method with such substructuring preconditioner is nearly optimal, and also robust with respect to the (possibly large) jumps of the coefficient in the elliptic equation. 1.
A Domain Decomposition Algorithm For Elliptic Problems In Three Dimensions
 NUMER. MATH
, 1991
"... ..."
Additive Schwarz Domain Decomposition Methods For Elliptic Problems On Unstructured Meshes
 Numerical Algorithms
, 1994
"... . We give several additive Schwarz domain decomposition methods for solving finite element problems which arise from the discretizations of elliptic problems on general unstructured meshes in two and three dimensions. Our theory requires no assumption (for the main results) on the substructures whic ..."
Abstract

Cited by 27 (13 self)
 Add to MetaCart
. We give several additive Schwarz domain decomposition methods for solving finite element problems which arise from the discretizations of elliptic problems on general unstructured meshes in two and three dimensions. Our theory requires no assumption (for the main results) on the substructures which constitute the whole domain, so each substructure can be of arbitrary shape and of different size. The global coarse mesh is allowed to be nonnested to the fine grid on which the discrete problem is to be solved and both the coarse meshes and the fine meshes need not be quasiuniform. In this general setting, our algorithms have the same optimal convergence rate of the usual domain decomposition methods on structured meshes. The condition numbers of the preconditoned systems depend only on the (possibly small) overlap of the substructures and the size of the coarse grid, but is independent of the sizes of the subdomains. Key Words. Unstructured meshes, nonnested coarse meshes, additive ...
Domain decomposition algorithms for mixed methods for second order elliptic problems
 Math. Comp
, 1996
"... Abstract. In this talk domain decomposition algorithms for mixed nite element methods for linear secondorder elliptic problems in IR2 and IR 3 are discussed. A convergence theory for twolevel and multilevel Schwarz methods applied to the algorithms under consideration is given. It is shown that th ..."
Abstract

Cited by 20 (12 self)
 Add to MetaCart
Abstract. In this talk domain decomposition algorithms for mixed nite element methods for linear secondorder elliptic problems in IR2 and IR 3 are discussed. A convergence theory for twolevel and multilevel Schwarz methods applied to the algorithms under consideration is given. It is shown that the condition number of these iterative methods is bounded uniformly from above in the same manner as in the theory of domain decomposition methods for conforming and nonconforming nite element methods for the same di erential problems. Numerical experiments are presented to illustrate the present techniques. 1.
A Domain Decomposition Preconditioner for a Parallel Finite Element Solver on Distributed Unstructured Grids
 Parallel Computing
, 1995
"... We consider a number of practical issues associated with the parallel distributed memory solution of elliptic partial differential equations using unstructured meshes in two dimensions. The first part of the paper describes a parallel mesh generation algorithm which is designed both for efficiency a ..."
Abstract

Cited by 15 (11 self)
 Add to MetaCart
We consider a number of practical issues associated with the parallel distributed memory solution of elliptic partial differential equations using unstructured meshes in two dimensions. The first part of the paper describes a parallel mesh generation algorithm which is designed both for efficiency and to produce a wellpartitioned, distributed mesh, suitable for the efficient parallel solution of an elliptic p.d.e. The second part of the paper concentrates on parallel domain decomposition preconditioning for the linear algebra problems which arise when solving such a p.d.e. on the unstructured meshes that we generate. It is demonstrated that by allowing the mesh generator and the p.d.e. solver to share a certain coarse grid structure we are able to obtain efficient parallel solutions to a number of large problems. Although the work is presented here in a finite element context, the issues of mesh generation and domain decomposition are not of course strictly dependent upon this particu...
Multiscale Domain Decomposition Methods for Elliptic Problems with High Aspect Ratios
"... Abstract In this paper we study some nonoverlapping domain decomposition methods for solving a class of elliptic problems arising from composite materials and flows in porous media which contain many spatial scales. Our preconditioner differs from traditional domain decomposition preconditioners by ..."
Abstract

Cited by 11 (0 self)
 Add to MetaCart
Abstract In this paper we study some nonoverlapping domain decomposition methods for solving a class of elliptic problems arising from composite materials and flows in porous media which contain many spatial scales. Our preconditioner differs from traditional domain decomposition preconditioners by using a coarse solver which is adaptive to small scale heterogeneous features. While the convergence rate of traditional domain decomposition algorithms using coarse solvers based on linear or polynomial interpolations may deteriorate in the presence of rapid small scale oscillations or high aspect ratios, our preconditioner is applicable to multiplescale problems without restrictive assumptions and seems to have a convergence rate nearly independent of the aspect ratio within the substructures. A rigorous convergence analysis based on the Schwarz framework is carried out, and we demonstrate the efficiency and robustness of the proposed preconditioner through numerical experiments which include problems with multiplescale coefficients, as well problems with continuous scales.
Some Recent Results On Schwarz Type Domain Decomposition Algorithms
, 1992
"... Numerical experiments have shown that twolevel Schwarz methods, for the solution of discrete elliptic problems, often perform very well even if the overlap between neighboring subregions is quite small. This is true to an even greater extent for a related algorithm, due to Barry Smith, where a Sch ..."
Abstract

Cited by 10 (1 self)
 Add to MetaCart
Numerical experiments have shown that twolevel Schwarz methods, for the solution of discrete elliptic problems, often perform very well even if the overlap between neighboring subregions is quite small. This is true to an even greater extent for a related algorithm, due to Barry Smith, where a Schwarz algorithm is applied to the reduced linear system of equations that remains after that the variables interior to the subregions have been eliminated. A supporting theory is outlined.