Results 1  10
of
15
A quasipolynomial bound for the diameter of graphs of polyhedra
 Bulletin Amer. Math. Soc
, 1992
"... ..."
(Show Context)
Linear Programming, the Simplex Algorithm and Simple Polytopes
 Math. Programming
, 1997
"... In the first part of the paper we survey some farreaching applications of the basic facts of linear programming to the combinatorial theory of simple polytopes. In the second part we discuss some recent developments concerning the simplex algorithm. We describe subexponential randomized pivot ru ..."
Abstract

Cited by 23 (1 self)
 Add to MetaCart
(Show Context)
In the first part of the paper we survey some farreaching applications of the basic facts of linear programming to the combinatorial theory of simple polytopes. In the second part we discuss some recent developments concerning the simplex algorithm. We describe subexponential randomized pivot rules and upper bounds on the diameter of graphs of polytopes. 1 Introduction: A convex polyhedron is the intersection P of a finite number of closed halfspaces in R d . P is a ddimensional polyhedron (briefly, a dpolyhedron) if the points in P affinely span R d . A convex ddimensional polytope (briefly, a dpolytope) is a bounded convex dpolyhedron. Alternatively, a convex dpolytope is the convex hull of a finite set of points which affinely span R d . A (nontrivial) face F of a dpolyhedron P is the intersection of P with a supporting hyperplane. F itself is a polyhedron of some lower dimension. If the dimension of F is k we call F a kface of P . The empty set and P itself are...
Randomized Simplex Algorithms on KleeMinty Cubes
 COMBINATORICA
, 1994
"... We investigate the behavior of randomized simplex algorithms on special linear programs. For this, we use combinatorial models for the KleeMinty cubes [22] and similar linear programs with exponential decreasing paths. The analysis of two most natural randomized pivot rules on the KleeMinty cubes ..."
Abstract

Cited by 19 (6 self)
 Add to MetaCart
(Show Context)
We investigate the behavior of randomized simplex algorithms on special linear programs. For this, we use combinatorial models for the KleeMinty cubes [22] and similar linear programs with exponential decreasing paths. The analysis of two most natural randomized pivot rules on the KleeMinty cubes leads to (nearly) quadratic lower bounds for the complexity of linear programming with random pivots. Thus we disprove two bounds (for the expected running time of the randomedge simplex algorithm on KleeMinty cubes) conjectured in the literature. At the same time, we establish quadratic upper bounds for the expected length of a path for a simplex algorithm with random pivots on the classes of linear programs under investigation. In contrast to this, we find that the average length of an increasing path in a KleeMinty cube is exponential when all paths are taken with equal probability.
Polytope Skeletons And Paths
 HANDBOOK OF DISCRETE AND COMPUTATIONAL GEOMETRY (SECOND EDITION ), CHAPTER 20
"... ..."
Diameter of Polyhedra: Limits of Abstraction
, 2009
"... We investigate the diameter of a natural abstraction of the 1skeleton of polyhedra. Although this abstraction is simpler than other abstractions that were previously studied in the literature, the best upper bounds on the diameter of polyhedra continue to hold here. On the other hand, we show that ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
(Show Context)
We investigate the diameter of a natural abstraction of the 1skeleton of polyhedra. Although this abstraction is simpler than other abstractions that were previously studied in the literature, the best upper bounds on the diameter of polyhedra continue to hold here. On the other hand, we show that this abstraction has its limits by providing a superlinear lower bound.