Results 1  10
of
77
A 2Categorical Approach To Change Of Base And Geometric Morphisms II
, 1998
"... We introduce a notion of equipment which generalizes the earlier notion of proarrow equipment and includes such familiar constructs as relK, spnK, parK, and proK for a suitable category K, along with related constructs such as the Vpro arising from a suitable monoidal category V. We further exhibi ..."
Abstract

Cited by 43 (7 self)
 Add to MetaCart
We introduce a notion of equipment which generalizes the earlier notion of proarrow equipment and includes such familiar constructs as relK, spnK, parK, and proK for a suitable category K, along with related constructs such as the Vpro arising from a suitable monoidal category V. We further exhibit the equipments as the objects of a 2category, in such a way that arbitrary functors F: L ✲ K induce equipment arrows relF: relL ✲ relK, spnF: spnL ✲ spnK, and so on, and similarly for arbitrary monoidal functors V ✲ W. The article I with the title above dealt with those equipments M having each M(A, B) only an ordered set, and contained a detailed analysis of the case M = relK; in the present article we allow the M(A, B) to be general categories, and illustrate our results by a detailed study of the case M = spnK. We show in particular that spn is a locallyfullyfaithful 2functor to the 2category of equipments, and determine its image on arrows. After analyzing the nature of adjunctions in the 2category of equipments, we are able to give a simple characterization of those spnG which arise from a geometric morphism G.
An Inductive View of Graph Transformation
 In Workshop on Algebraic Development Techniques
, 1998
"... . The dynamic behavior of rulebased systems (like term rewriting systems [24], process algebras [27], and so on) can be traditionally determined in two orthogonal ways. Either operationally, in the sense that a way of embedding a rule into a state is devised, stating explicitly how the result i ..."
Abstract

Cited by 30 (12 self)
 Add to MetaCart
. The dynamic behavior of rulebased systems (like term rewriting systems [24], process algebras [27], and so on) can be traditionally determined in two orthogonal ways. Either operationally, in the sense that a way of embedding a rule into a state is devised, stating explicitly how the result is built: This is the role played by (the application of) a substitution in term rewriting. Or inductively, showing how to build the class of all possible reductions from a set of basic ones: For term rewriting, this is the usual definition of the rewrite relation as the minimal closure of the rewrite rules. As far as graph transformation is concerned, the operational view is by far more popular: In this paper we lay the basis for the orthogonal view. We first provide an inductive description for graphs as arrows of a freely generated dgsmonoidal category. We then apply 2categorical techniques, already known for term and term graph rewriting [29, 7], recasting in this framework the...
Nuclear and Trace Ideals in Tensored *Categories
, 1998
"... We generalize the notion of nuclear maps from functional analysis by defining nuclear ideals in tensored categories. The motivation for this study came from attempts to generalize the structure of the category of relations to handle what might be called "probabilistic relations". The comp ..."
Abstract

Cited by 26 (9 self)
 Add to MetaCart
We generalize the notion of nuclear maps from functional analysis by defining nuclear ideals in tensored categories. The motivation for this study came from attempts to generalize the structure of the category of relations to handle what might be called "probabilistic relations". The compact closed structure associated with the category of relations does not generalize directly, instead one obtains nuclear ideals. Most tensored categories have a large class of morphisms which behave as if they were part of a compact closed category, i.e. they allow one to transfer variables between the domain and the codomain. We introduce the notion of nuclear ideals to analyze these classes of morphisms. In compact closed tensored categories, all morphisms are nuclear, and in the tensored category of Hilbert spaces, the nuclear morphisms are the HilbertSchmidt maps. We also introduce two new examples of tensored categories, in which integration plays the role of composition. In the first, mor...
Interacting quantum observables
 of Lecture Notes in Computer Science
, 2008
"... Abstract. We formalise the constructive content of an essential feature of quantum mechanics: the interaction of complementary quantum observables, and information flow mediated by them. Using a general categorical formulation, we show that pairs of mutually unbiased quantum account on the quantum d ..."
Abstract

Cited by 24 (13 self)
 Add to MetaCart
Abstract. We formalise the constructive content of an essential feature of quantum mechanics: the interaction of complementary quantum observables, and information flow mediated by them. Using a general categorical formulation, we show that pairs of mutually unbiased quantum account on the quantum data encoded in complex phases, and prove a normal form theorem for it. Together these enable us to describe all observables of finite dimensional Hilbert space quantum mechanics. The resulting equations suffice to perform computations with elementary quantum gates, translate between distinct quantum computational models, establish the equivalence of entangled quantum states, and simulate quantum algorithms such as the quantum Fourier transform. All these computations moreover happen within an intuitive diagrammatic calculus. 1
Solving Recursive Domain Equations with Enriched Categories
, 1994
"... Both preorders and metric spaces have been used at various times as a foundation for the solution of recursive domain equations in the area of denotational semantics. In both cases the central theorem states that a `converging' sequence of `complete' domains/spaces with `continuous' ..."
Abstract

Cited by 21 (0 self)
 Add to MetaCart
Both preorders and metric spaces have been used at various times as a foundation for the solution of recursive domain equations in the area of denotational semantics. In both cases the central theorem states that a `converging' sequence of `complete' domains/spaces with `continuous' retraction pairs between them has a limit in the category of complete domains/spaces with retraction pairs as morphisms. The preorder version was discovered first by Scott in 1969, and is referred to as Scott's inverse limit theorem. The metric version was mainly developed by de Bakker and Zucker and refined and generalized by America and Rutten. The theorem in both its versions provides the main tool for solving recursive domain equations. The proofs of the two versions of the theorem look astonishingly similar, but until now the preconditions for the preorder and the metric versions have seemed to be fundamentally different. In this thesis we establish a more general theory of domains based on the noti...
Frobenius monads and pseudomonoids
 2CATEGORIES COMPANION 73
, 2004
"... Six equivalent definitions of Frobenius algebra in a monoidal category are provided. In a monoidal bicategory, a pseudoalgebra is Frobenius if and only i f it is star autonomous. Autonomous pseudoalgebras are also Frobenius. What i t means for a morphism of a bicategory to be a projective equivalenc ..."
Abstract

Cited by 20 (4 self)
 Add to MetaCart
Six equivalent definitions of Frobenius algebra in a monoidal category are provided. In a monoidal bicategory, a pseudoalgebra is Frobenius if and only i f it is star autonomous. Autonomous pseudoalgebras are also Frobenius. What i t means for a morphism of a bicategory to be a projective equivalence is defined; this concept is related to &quot;strongly separable &quot; Frobenius algebras and &quot;weak monoidal Morita equivalence&quot;. Wreath products of Frobenius algebras are discussed.
A BiCategorical Axiomatisation of Concurrent Graph Rewriting
, 1999
"... In this paper the concurrent semantics of doublepushout (DPO) graph rewriting, which is classically defined in terms of shiftequivalence classes of graph derivations, is axiomatised via the construction of a free monoidal bicategory. In contrast to a previous attempt based on 2categories, the us ..."
Abstract

Cited by 18 (10 self)
 Add to MetaCart
In this paper the concurrent semantics of doublepushout (DPO) graph rewriting, which is classically defined in terms of shiftequivalence classes of graph derivations, is axiomatised via the construction of a free monoidal bicategory. In contrast to a previous attempt based on 2categories, the use of bicategories allows to define rewriting on concrete graphs. Thus, the problem of composition of isomorphism classes of rewriting sequences is avoided. Moreover, as a first step towards the recovery of the full expressive power of the formalism via a purely algebraic description, the concept of disconnected rules is introduced, i.e., rules whose interface graphs are made of disconnected nodes and edges only. It is proved that, under reasonable assumptions, rewriting via disconnected rules enjoys similar concurrency properties like in the classical approach.
Categories, Allegories and Circuit Design
 In Ninth Annual IEEE Symposium on Logic in Computer Science
, 1994
"... Relational languages such as Ruby are used to derive hardware circuits from abstract specifications of their behaviour. Much reasoning is done informally in Ruby using pictorial representations of relational terms. We formalise this use of pictures in circuit design. We show that pictures naturally ..."
Abstract

Cited by 18 (1 self)
 Add to MetaCart
Relational languages such as Ruby are used to derive hardware circuits from abstract specifications of their behaviour. Much reasoning is done informally in Ruby using pictorial representations of relational terms. We formalise this use of pictures in circuit design. We show that pictures naturally form a unitary pretabular allegory. Homomorphisms of pictures correspond to adding new wires or circuit components. Two pictures are mutually homomorphic if and only if they represent equal allegorical terms. We prove soundness and completeness results which guarantee that deriving circuits using pictures does not lead to errors. We illustrate the use of pictures by deriving the ripple adder implementation from a high level, behavioural specification. 1: Introduction Hardware circuit design involves translating abstract specifications of programs into efficient circuits which compute those programs. Pictures are widely used as an informal means of translating a specification into an imple...
Boundedness And Complete Distributivity
 IV, Appl. Categ. Structures
"... . We extend the concept of constructive complete distributivity so as to make it applicable to ordered sets admitting merely bounded suprema. The KZdoctrine for bounded suprema is of some independent interest and a few results about it are given. The 2category of ordered sets admitting bounded ..."
Abstract

Cited by 16 (7 self)
 Add to MetaCart
. We extend the concept of constructive complete distributivity so as to make it applicable to ordered sets admitting merely bounded suprema. The KZdoctrine for bounded suprema is of some independent interest and a few results about it are given. The 2category of ordered sets admitting bounded suprema over which nonempty infima distribute is shown to be biequivalent to a 2category defined in terms of idempotent relations. As a corollary we obtain a simple construction of the nonnegative reals. 1. Introduction 1.1. The main theorem of [RW1] exhibited a biequivalence between the 2category of (constructively) completely distributive lattices and suppreserving arrows, and the idempotent splitting completion of the 2category of relations  relative to any base topos. Somewhat in passing in [RW1], it was pointed out that this biequivalence provides a simple construction of the closed unit interval ([0; 1]; ), namely as the ordered set of downsets for the idempotent relat...