Results 1  10
of
878
An Optimal Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions
 ACMSIAM SYMPOSIUM ON DISCRETE ALGORITHMS
, 1994
"... Consider a set S of n data points in real ddimensional space, R d , where distances are measured using any Minkowski metric. In nearest neighbor searching we preprocess S into a data structure, so that given any query point q 2 R d , the closest point of S to q can be reported quickly. Given any po ..."
Abstract

Cited by 776 (31 self)
 Add to MetaCart
Consider a set S of n data points in real ddimensional space, R d , where distances are measured using any Minkowski metric. In nearest neighbor searching we preprocess S into a data structure, so that given any query point q 2 R d , the closest point of S to q can be reported quickly. Given any positive real ffl, a data point p is a (1 + ffl)approximate nearest neighbor of q if its distance from q is within a factor of (1 + ffl) of the distance to the true nearest neighbor. We show that it is possible to preprocess a set of n points in R d in O(dn log n) time and O(dn) space, so that given a query point q 2 R d , and ffl ? 0, a (1 + ffl)approximate nearest neighbor of q can be computed in O(c d;ffl log n) time, where c d;ffl d d1 + 6d=ffle d is a factor depending only on dimension and ffl. In general, we show that given an integer k 1, (1 + ffl)approximations to the k nearest neighbors of q can be computed in additional O(kd log n) time.
Approximate Nearest Neighbors: Towards Removing the Curse of Dimensionality
, 1998
"... The nearest neighbor problem is the following: Given a set of n points P = fp 1 ; : : : ; png in some metric space X, preprocess P so as to efficiently answer queries which require finding the point in P closest to a query point q 2 X. We focus on the particularly interesting case of the ddimens ..."
Abstract

Cited by 711 (33 self)
 Add to MetaCart
The nearest neighbor problem is the following: Given a set of n points P = fp 1 ; : : : ; png in some metric space X, preprocess P so as to efficiently answer queries which require finding the point in P closest to a query point q 2 X. We focus on the particularly interesting case of the ddimensional Euclidean space where X = ! d under some l p norm. Despite decades of effort, the current solutions are far from satisfactory; in fact, for large d, in theory or in practice, they provide little improvement over the bruteforce algorithm which compares the query point to each data point. Of late, there has been some interest in the approximate nearest neighbors problem, which is: Find a point p 2 P that is an fflapproximate nearest neighbor of the query q in that for all p 0 2 P , d(p; q) (1 + ffl)d(p 0 ; q). We present two algorithmic results for the approximate version that significantly improve the known bounds: (a) preprocessing cost polynomial in n and d, and a trul...
Efficient and Effective Clustering Methods for Spatial Data Mining
, 1994
"... Spatial data mining is the discovery of interesting relationships and characteristics that may exist implicitly in spatial databases. In this paper, we explore whether clustering methods have a role to play in spatial data mining. To this end, we develop a new clustering method called CLARANS which ..."
Abstract

Cited by 589 (37 self)
 Add to MetaCart
Spatial data mining is the discovery of interesting relationships and characteristics that may exist implicitly in spatial databases. In this paper, we explore whether clustering methods have a role to play in spatial data mining. To this end, we develop a new clustering method called CLARANS which is based on randomized search. We also de velop two spatial data mining algorithms that use CLARANS. Our analysis and experiments show that with the assistance of CLARANS, these two algorithms are very effective and can lead to discoveries that are difficult to find with current spatial data mining algorithms.
Multidimensional Access Methods
, 1998
"... Search operations in databases require special support at the physical level. This is true for conventional databases as well as spatial databases, where typical search operations include the point query (find all objects that contain a given search point) and the region query (find all objects that ..."
Abstract

Cited by 560 (3 self)
 Add to MetaCart
Search operations in databases require special support at the physical level. This is true for conventional databases as well as spatial databases, where typical search operations include the point query (find all objects that contain a given search point) and the region query (find all objects that overlap a given search region). More
A Quantitative Analysis and Performance Study for SimilaritySearch Methods in HighDimensional Spaces
, 1998
"... For similarity search in highdimensional vector spaces (or `HDVSs'), researchers have proposed a number of new methods (or adaptations of existing methods) based, in the main, on dataspace partitioning. However, the performance of these methods generally degrades as dimensionality increases. Altho ..."
Abstract

Cited by 487 (12 self)
 Add to MetaCart
For similarity search in highdimensional vector spaces (or `HDVSs'), researchers have proposed a number of new methods (or adaptations of existing methods) based, in the main, on dataspace partitioning. However, the performance of these methods generally degrades as dimensionality increases. Although this phenomenonknown as the `dimensional curse'is well known, little or no quantitative analysis of the phenomenon is available. In this paper, we provide a detailed analysis of partitioning and clustering techniques for similarity search in HDVSs. We show formally that these methods exhibit linear complexity at high dimensionality, and that existing methods are outperformed on average by a simple sequential scan if the number of dimensions exceeds around 10. Consequently, we come up with an alternative organization based on approximations to make the unavoidable sequential scan as fast as possible. We describe a simple vector approximation scheme, called VAfile, and report on an ...
Nearest Neighbor Queries
, 1995
"... A frequently encountered type of query in Geographic Information Systems is to find the k nearest neighbor objects to a given point in space. Processing such queries requires substantially different search algorithms than those for location or range queries. In this paper we present an efficient bra ..."
Abstract

Cited by 481 (1 self)
 Add to MetaCart
A frequently encountered type of query in Geographic Information Systems is to find the k nearest neighbor objects to a given point in space. Processing such queries requires substantially different search algorithms than those for location or range queries. In this paper we present an efficient branchandbound Rtree traversal algorithm to find the nearest neighbor object to a point, and then generalize it to finding the k nearest neighbors. We also discuss metrics for an optimistic and a pessimistic search ordering strategy as well as for pruning. Finally, we present the results of several experiments obtained using the implementation of our algorithm and examine the behavior of the metrics and the scalability of the algorithm.
Locally weighted learning
 ARTIFICIAL INTELLIGENCE REVIEW
, 1997
"... This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, ass ..."
Abstract

Cited by 447 (52 self)
 Add to MetaCart
This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, assessing predictions, handling noisy data and outliers, improving the quality of predictions by tuning t parameters, interference between old and new data, implementing locally weighted learning e ciently, and applications of locally weighted learning. A companion paper surveys how locally weighted learning can be used in robot learning and control.
Efficient and Effective Querying by Image Content
 Journal of Intelligent Information Systems
, 1994
"... In the QBIC (Query By Image Content) project we are studying methods to query large online image databases using the images' content as the basis of the queries. Examples of the content we use include color, texture, and shape of image objects and regions. Potential applications include medical ..."
Abstract

Cited by 429 (12 self)
 Add to MetaCart
In the QBIC (Query By Image Content) project we are studying methods to query large online image databases using the images' content as the basis of the queries. Examples of the content we use include color, texture, and shape of image objects and regions. Potential applications include medical ("Give me other images that contain a tumor with a texture like this one"), photojournalism ("Give me images that have blue at the top and red at the bottom"), and many others in art, fashion, cataloging, retailing, and industry. We describe a set of novel features and similarity measures allowing query by color, texture, and shape of image object. We demonstrate the effectiveness of the QBIC system with normalized precision and recall experiments on test databases containing over 1000 images and 1000 objects populated from commercially available photo clip art images, and of images of airplane silhouettes. We also consider the efficient indexing of these features, specifically addre...
Fast Subsequence Matching in TimeSeries Databases
 SIGMOD 94
, 1994
"... We present an efficient indexing method to locate 1dimensional subsequences witbin a collection of sequences, such that the subsequences match a given (query) pattern within a specified tolerance. The idea is to map each data sequence into a small set of multidimensional rectangles in feature space ..."
Abstract

Cited by 423 (21 self)
 Add to MetaCart
We present an efficient indexing method to locate 1dimensional subsequences witbin a collection of sequences, such that the subsequences match a given (query) pattern within a specified tolerance. The idea is to map each data sequence into a small set of multidimensional rectangles in feature space. Then, these rectangles can be readily indexed using traditional spatial access methods, like the R*tree [9]. In more deteil, we use a sliding window over the data sequence and extract its features; the result is a trail in feature space. We propose an efficient and effective algorithm to divide such trails into subtrails, which are subsequently represented by their Minimum Bounding Rectangles (MBRs). We also examine queries of varying lengths, and we show how to handle each case efficiently. We implemented our method and carried out experiments on synthetic and real data (stock price movements). We compared the method to sequential scanning, which is the only obvious competitor. The results were excellent: our method accelerated the search time from 3 times up to 100 times.
Similarity search in high dimensions via hashing
, 1999
"... The nearest or nearneighbor query problems arise in a large variety of database applications, usually in the context of similarity searching. Of late, there has been increasing interest in building search/index structures for performing similarity search over highdimensional data, e.g., image dat ..."
Abstract

Cited by 414 (12 self)
 Add to MetaCart
The nearest or nearneighbor query problems arise in a large variety of database applications, usually in the context of similarity searching. Of late, there has been increasing interest in building search/index structures for performing similarity search over highdimensional data, e.g., image databases, document collections, timeseries databases, and genome databases. Unfortunately, all known techniques for solving this problem fall prey to the \curse of dimensionality. " That is, the data structures scale poorly with data dimensionality; in fact, if the number of dimensions exceeds 10 to 20, searching in kd trees and related structures involves the inspection of a large fraction of the database, thereby doing no better than bruteforce linear search. It has been suggested that since the selection of features and the choice of a distance metric in typical applications is rather heuristic, determining an approximate nearest neighbor should su ce for most practical purposes. In this paper, we examine a novel scheme for approximate similarity search based on hashing. The basic idea is to hash the points