Results 1  10
of
302
Boosting the margin: A new explanation for the effectiveness of voting methods
 In Proceedings International Conference on Machine Learning
, 1997
"... Abstract. One of the surprising recurring phenomena observed in experiments with boosting is that the test error of the generated classifier usually does not increase as its size becomes very large, and often is observed to decrease even after the training error reaches zero. In this paper, we show ..."
Abstract

Cited by 724 (52 self)
 Add to MetaCart
Abstract. One of the surprising recurring phenomena observed in experiments with boosting is that the test error of the generated classifier usually does not increase as its size becomes very large, and often is observed to decrease even after the training error reaches zero. In this paper, we show that this phenomenon is related to the distribution of margins of the training examples with respect to the generated voting classification rule, where the margin of an example is simply the difference between the number of correct votes and the maximum number of votes received by any incorrect label. We show that techniques used in the analysis of Vapnik’s support vector classifiers and of neural networks with small weights can be applied to voting methods to relate the margin distribution to the test error. We also show theoretically and experimentally that boosting is especially effective at increasing the margins of the training examples. Finally, we compare our explanation to those based on the biasvariance decomposition. 1
Regularization Theory and Neural Networks Architectures
 Neural Computation
, 1995
"... We had previously shown that regularization principles lead to approximation schemes which are equivalent to networks with one layer of hidden units, called Regularization Networks. In particular, standard smoothness functionals lead to a subclass of regularization networks, the well known Radial Ba ..."
Abstract

Cited by 314 (31 self)
 Add to MetaCart
We had previously shown that regularization principles lead to approximation schemes which are equivalent to networks with one layer of hidden units, called Regularization Networks. In particular, standard smoothness functionals lead to a subclass of regularization networks, the well known Radial Basis Functions approximation schemes. This paper shows that regularization networks encompass a much broader range of approximation schemes, including many of the popular general additive models and some of the neural networks. In particular, we introduce new classes of smoothness functionals that lead to different classes of basis functions. Additive splines as well as some tensor product splines can be obtained from appropriate classes of smoothness functionals. Furthermore, the same generalization that extends Radial Basis Functions (RBF) to Hyper Basis Functions (HBF) also leads from additive models to ridge approximation models, containing as special cases Breiman's hinge functions, som...
The Sample Complexity of Pattern Classification With Neural Networks: The Size of the Weights is More Important Than the Size of the Network
, 1997
"... Sample complexity results from computational learning theory, when applied to neural network learning for pattern classification problems, suggest that for good generalization performance the number of training examples should grow at least linearly with the number of adjustable parameters in the ne ..."
Abstract

Cited by 177 (15 self)
 Add to MetaCart
Sample complexity results from computational learning theory, when applied to neural network learning for pattern classification problems, suggest that for good generalization performance the number of training examples should grow at least linearly with the number of adjustable parameters in the network. Results in this paper show that if a large neural network is used for a pattern classification problem and the learning algorithm finds a network with small weights that has small squared error on the training patterns, then the generalization performance depends on the size of the weights rather than the number of weights. For example, consider a twolayer feedforward network of sigmoid units, in which the sum of the magnitudes of the weights associated with each unit is bounded by A and the input dimension is n. We show that the misclassification probability is no more than a certain error estimate (that is related to squared error on the training set) plus A³ p (log n)=m (ignori...
Nonlinear BlackBox Modeling in System Identification: a Unified Overview
 Automatica
, 1995
"... A nonlinear black box structure for a dynamical system is a model structure that is prepared to describe virtually any nonlinear dynamics. There has been considerable recent interest in this area with structures based on neural networks, radial basis networks, wavelet networks, hinging hyperplanes, ..."
Abstract

Cited by 139 (15 self)
 Add to MetaCart
A nonlinear black box structure for a dynamical system is a model structure that is prepared to describe virtually any nonlinear dynamics. There has been considerable recent interest in this area with structures based on neural networks, radial basis networks, wavelet networks, hinging hyperplanes, as well as wavelet transform based methods and models based on fuzzy sets and fuzzy rules. This paper describes all these approaches in a common framework, from a user's perspective. It focuses on what are the common features in the different approaches, the choices that have to be made and what considerations are relevant for a successful system identification application of these techniques. It is pointed out that the nonlinear structures can be seen as a concatenation of a mapping from observed data to a regression vector and a nonlinear mapping from the regressor space to the output space. These mappings are discussed separately. The latter mapping is usually formed as a basis function e...
Ridgelets: A key to higherdimensional intermittency?
, 1999
"... In dimensions two and higher, wavelets can efficiently represent only a small range of the full diversity of interesting behavior. In effect, wavelets are welladapted for pointlike phenomena, whereas in dimensions greater than one, interesting phenomena can be organized along lines, hyperplanes, and ..."
Abstract

Cited by 116 (10 self)
 Add to MetaCart
In dimensions two and higher, wavelets can efficiently represent only a small range of the full diversity of interesting behavior. In effect, wavelets are welladapted for pointlike phenomena, whereas in dimensions greater than one, interesting phenomena can be organized along lines, hyperplanes, and other nonpointlike structures, for which wavelets are poorly adapted. We discuss in this paper a new subject, ridgelet analysis, which can effectively deal with linelike phenomena in dimension 2, planelike phenomena in dimension 3 and so on. It encompasses a collection of tools which all begin from the idea of analysis by ridge functions ψ(u1x1+...+unxn) whose ridge profiles ψ are wavelets, or alternatively from performing a wavelet analysis in the Radon domain. The paper reviews recent work on the continuous ridgelet transform (CRT), ridgelet frames, ridgelet orthonormal bases, ridgelets and edges and describes a new notion of smoothness naturally attached to this new representation.
A nonparametric approach to pricing and hedging derivative securities via learning networks
 Journal of Finance
, 1994
"... http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, noncom ..."
Abstract

Cited by 105 (4 self)
 Add to MetaCart
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, noncommercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
InformationTheoretic Determination of Minimax Rates of Convergence
 Ann. Stat
, 1997
"... In this paper, we present some general results determining minimax bounds on statistical risk for density estimation based on certain informationtheoretic considerations. These bounds depend only on metric entropy conditions and are used to identify the minimax rates of convergence. ..."
Abstract

Cited by 93 (18 self)
 Add to MetaCart
In this paper, we present some general results determining minimax bounds on statistical risk for density estimation based on certain informationtheoretic considerations. These bounds depend only on metric entropy conditions and are used to identify the minimax rates of convergence.
Highdimensional data analysis: The curses and blessings of dimensionality. AideMemoire of a Lecture at
 AMS Conference on Math Challenges of the 21st Century
, 2000
"... The coming century is surely the century of data. A combination of blind faith and serious purpose makes our society invest massively in the collection and processing of data of all kinds, on scales unimaginable until recently. Hyperspectral Imagery, Internet Portals, Financial tickbytick data, an ..."
Abstract

Cited by 92 (0 self)
 Add to MetaCart
The coming century is surely the century of data. A combination of blind faith and serious purpose makes our society invest massively in the collection and processing of data of all kinds, on scales unimaginable until recently. Hyperspectral Imagery, Internet Portals, Financial tickbytick data, and DNA Microarrays are just a few of the betterknown sources, feeding data in torrential streams into scientific and business databases worldwide. In traditional statistical data analysis, we think of observations of instances of particular phenomena (e.g. instance ↔ human being), these observations being a vector of values we measured on several variables (e.g. blood pressure, weight, height,...). In traditional statistical methodology, we assumed many observations and a few, wellchosen variables. The trend today is towards more observations but even more so, to radically larger numbers of variables – voracious, automatic, systematic collection of hyperinformative detail about each observed instance. We are seeing examples where the observations gathered on individual instances are curves, or spectra, or images, or
Large Sample Sieve Estimation of SemiNonparametric Models
 Handbook of Econometrics
, 2007
"... Often researchers find parametric models restrictive and sensitive to deviations from the parametric specifications; seminonparametric models are more flexible and robust, but lead to other complications such as introducing infinite dimensional parameter spaces that may not be compact. The method o ..."
Abstract

Cited by 89 (13 self)
 Add to MetaCart
Often researchers find parametric models restrictive and sensitive to deviations from the parametric specifications; seminonparametric models are more flexible and robust, but lead to other complications such as introducing infinite dimensional parameter spaces that may not be compact. The method of sieves provides one way to tackle such complexities by optimizing an empirical criterion function over a sequence of approximating parameter spaces, called sieves, which are significantly less complex than the original parameter space. With different choices of criteria and sieves, the method of sieves is very flexible in estimating complicated econometric models. For example, it can simultaneously estimate the parametric and nonparametric components in seminonparametric models with or without constraints. It can easily incorporate prior information, often derived from economic theory, such as monotonicity, convexity, additivity, multiplicity, exclusion and nonnegativity. This chapter describes estimation of seminonparametric econometric models via the method of sieves. We present some general results on the large sample properties of the sieve estimates, including consistency of the sieve extremum estimates, convergence rates of the sieve Mestimates, pointwise normality of series estimates of regression functions, rootn asymptotic normality and efficiency of sieve estimates of smooth functionals of infinite dimensional parameters. Examples are used to illustrate the general results.
Efficient Agnostic Learning of Neural Networks with Bounded Fanin
, 1996
"... We show that the class of two layer neural networks with bounded fanin is efficiently learnable in a realistic extension to the Probably Approximately Correct (PAC) learning model. In this model, a joint probability distribution is assumed to exist on the observations and the learner is required to ..."
Abstract

Cited by 68 (18 self)
 Add to MetaCart
We show that the class of two layer neural networks with bounded fanin is efficiently learnable in a realistic extension to the Probably Approximately Correct (PAC) learning model. In this model, a joint probability distribution is assumed to exist on the observations and the learner is required to approximate the neural network which minimizes the expected quadratic error. As special cases, the model allows learning realvalued functions with bounded noise, learning probabilistic concepts and learning the best approximation to a target function that cannot be well approximated by the neural network. The networks we consider have realvalued inputs and outputs, an unlimited number of threshold hidden units with bounded fanin, and a bound on the sum of the absolute values of the output weights. The number of computation This work was supported by the Australian Research Council and the Australian Telecommunications and Electronics Research Board. The material in this paper was pres...