Results 1 
3 of
3
A CategoryTheoretic Account of Program Modules
 Mathematical Structures in Computer Science
, 1994
"... The typetheoretic explanation of modules proposed to date (for programming languages like ML) is unsatisfactory, because it does not capture that evaluation of typeexpressions is independent from evaluation of programexpressions. We propose a new explanation based on \programming languages as inde ..."
Abstract

Cited by 25 (6 self)
 Add to MetaCart
(Show Context)
The typetheoretic explanation of modules proposed to date (for programming languages like ML) is unsatisfactory, because it does not capture that evaluation of typeexpressions is independent from evaluation of programexpressions. We propose a new explanation based on \programming languages as indexed categories" and illustrates how ML can be extended to support higher order modules, by developing a categorytheoretic semantics for a calculus of modules with dependent types. The paper outlines also a methodology, which may lead to a modular approach in the study of programming languages. Introduction The addition of module facilities to programming languages is motivated by the need to provide a better environment for the development and maintenance of large programs. Nowadays many programming languages include such facilities. Throughout the paper Standard ML (see [Mac85, HMM86, MTH90]) is taken as representative for these languages. The implementation of module facilities has been ...
Programming Metalogics with a Fixpoint Type
, 1992
"... A programming metalogic is a formal system into which programming languages can be translated and given meaning. The translation should both reflect the structure of the language and make it easy to prove properties of programs. This thesis develops certain metalogics using techniques of category th ..."
Abstract

Cited by 12 (6 self)
 Add to MetaCart
A programming metalogic is a formal system into which programming languages can be translated and given meaning. The translation should both reflect the structure of the language and make it easy to prove properties of programs. This thesis develops certain metalogics using techniques of category theory and treats recursion in a new way. The notion of a category with fixpoint object is defined. Corresponding to this categorical structure there are type theoretic equational rules which will be present in all of the metalogics considered. These rules define the fixpoint type which will allow the interpretation of recursive declarations. With these core notions FIX categories are defined. These are the categorical equivalent of an equational logic which can be viewed as a very basic programming metalogic. Recursion is treated both syntactically and categorically. The expressive power of the equational logic is increased by embedding it in an intuitionistic predicate calculus, giving rise to the FIX logic. This contains propositions about the evaluation of computations to values and an induction principle which is derived from the definition of a fixpoint object as an initial algebra. The categorical structure which accompanies the FIX logic is defined, called a FIX hyperdoctrine, and certain existence and disjunction properties of FIX are stated. A particular FIX hyperdoctrine is constructed and used in the proof of the same properties. PCFstyle languages are translated into the FIX logic and computational adequacy reaulta are proved. Two languages are studied: Both are similar to PCF except one has call by value recursive function declararations and the other higher order conditionals. ...