Results 1  10
of
29
Approximate distance oracles
 J. ACM
"... Let G = (V, E) be an undirected weighted graph with V  = n and E  = m. Let k ≥ 1 be an integer. We show that G = (V, E) can be preprocessed in O(kmn 1/k) expected time, constructing a data structure of size O(kn 1+1/k), such that any subsequent distance query can be answered, approximately, in ..."
Abstract

Cited by 205 (8 self)
 Add to MetaCart
Let G = (V, E) be an undirected weighted graph with V  = n and E  = m. Let k ≥ 1 be an integer. We show that G = (V, E) can be preprocessed in O(kmn 1/k) expected time, constructing a data structure of size O(kn 1+1/k), such that any subsequent distance query can be answered, approximately, in O(k) time. The approximate distance returned is of stretch at most 2k − 1, i.e., the quotient obtained by dividing the estimated distance by the actual distance lies between 1 and 2k−1. A 1963 girth conjecture of Erdős, implies that Ω(n 1+1/k) space is needed in the worst case for any real stretch strictly smaller than 2k + 1. The space requirement of our algorithm is, therefore, essentially optimal. The most impressive feature of our data structure is its constant query time, hence the name “oracle”. Previously, data structures that used only O(n 1+1/k) space had a query time of Ω(n 1/k). Our algorithms are extremely simple and easy to implement efficiently. They also provide faster constructions of sparse spanners of weighted graphs, and improved tree covers and distance labelings of weighted or unweighted graphs. 1
Nearest Common Ancestors: A survey and a new distributed algorithm
, 2002
"... Several papers describe linear time algorithms to preprocess a tree, such that one can answer subsequent nearest common ancestor queries in constant time. Here, we survey these algorithms and related results. A common idea used by all the algorithms for the problem is that a solution for complete ba ..."
Abstract

Cited by 76 (12 self)
 Add to MetaCart
Several papers describe linear time algorithms to preprocess a tree, such that one can answer subsequent nearest common ancestor queries in constant time. Here, we survey these algorithms and related results. A common idea used by all the algorithms for the problem is that a solution for complete balanced binary trees is straightforward. Furthermore, for complete balanced binary trees we can easily solve the problem in a distributed way by labeling the nodes of the tree such that from the labels of two nodes alone one can compute the label of their nearest common ancestor. Whether it is possible to distribute the data structure into short labels associated with the nodes is important for several applications such as routing. Therefore, related labeling problems have received a lot of attention recently.
Proximity search in databases
 In VLDB
, 1998
"... An information retrieval (IR) engine can rank documents based on textual proximityofkeywords within each document. In this paper we apply this notion to search across an entire database for objects that are \near " other relevant objects. Proximity search enables simple \focusing " queries ..."
Abstract

Cited by 56 (1 self)
 Add to MetaCart
An information retrieval (IR) engine can rank documents based on textual proximityofkeywords within each document. In this paper we apply this notion to search across an entire database for objects that are \near " other relevant objects. Proximity search enables simple \focusing " queries based on general relationships among objects, helpful for interactive query sessions. We view the database as a graph, with data in vertices (objects) and relationships indicated by edges. Proximity is dened based on shortest paths between objects. We have implemented a prototype search engine that uses this model to enable keyword searches over databases, and we have found it very e ective for quickly nding relevant information. Computing the distance between objects in a graph stored on disk can be very expensive. Hence, we show how to build compact indexes that allow us to quickly nd the distance between objects at search time. Experiments show that our algorithms are ecient and scale well. 1
Using Multilevel Graphs for Timetable Information in Railway Systems
 IN PROCEEDINGS 4TH WORKSHOP ON ALGORITHM ENGINEERING AND EXPERIMENTS (ALENEX 2002), VOLUME 2409 OF SPRINGER LNCS
, 2002
"... In many fields of application shortest path finding problems in very large graphs arise. Scenarios where large numbers ofonW##O queries for shortest paths have to be processedin realtime appear for examplein tra#cinc5###HF5 systems.In such systems, the techn5Ww# con sidered to speed up the shortes ..."
Abstract

Cited by 25 (11 self)
 Add to MetaCart
In many fields of application shortest path finding problems in very large graphs arise. Scenarios where large numbers ofonW##O queries for shortest paths have to be processedin realtime appear for examplein tra#cinc5###HF5 systems.In such systems, the techn5Ww# con sidered to speed up the shortest pathcomputation are usually basedon precomputed incomputed5 On approach proposedoften in thiscon text is a spacereduction where precomputed shortest paths are replaced by sin## edges with weight equal to thelenOq of the corresponres shortest path.In this paper, we give a first systematic experimen tal study of such a spacereduction approach. Wein troduce theconOkW of multilevel graph decomposition Foron specificapplication scenica from the field of timetable information in public tranc ort, we perform a detailed anai ysisan experimen tal evaluation of shortest path computation based on multilevel graph decomposition.
Distance oracles for sparse graphs
 In Proceedings of the 50th IEEE Symposium on Foundations of Computer Science (FOCS
"... Abstract — Thorup and Zwick, in their seminal work, introduced the approximate distance oracle, which is a data structure that answers distance queries in a graph. For any integer k, they showed an efficient algorithm to construct an approximate distance oracle using space O(kn 1+1/k) that can answe ..."
Abstract

Cited by 18 (3 self)
 Add to MetaCart
Abstract — Thorup and Zwick, in their seminal work, introduced the approximate distance oracle, which is a data structure that answers distance queries in a graph. For any integer k, they showed an efficient algorithm to construct an approximate distance oracle using space O(kn 1+1/k) that can answer queries in time O(k) with a distance estimate that is at most α = 2k − 1 times larger than the actual shortest distance (α is called the stretch). They proved that, under a combinatorial conjecture, their data structure is optimal in terms of space: if a stretch of at most 2k−1 is desired, then the space complexity is at least n 1+1/k. Their proof holds even if infinite query time is allowed: it is essentially an “incompressibility ” result. Also, the proof only holds for dense graphs, and the best bound it can prove only implies that the size of the data structure is lower bounded by the number of edges of the graph. Naturally, the following question arises: what happens for sparse graphs? In this paper we give a new lower bound for approximate distance oracles in the cellprobe model. This lower bound holds even for sparse (polylog(n)degree) graphs, and it is not an “incompressibility ” bound: we prove a threeway tradeoff between space, stretch and query time. We show that, when the query time is t, and the stretch is α, then the space S must be S ≥ n 1+Ω(1/tα) / lg n. (1) This lower bound follows by a reduction from lopsided set disjointness to distance oracles, based on and motivated by recent work of Pǎtras¸cu. Our results in fact show that for any highgirth regular graph, an approximate distance oracle that supports efficient queries for all subgraphs of G must obey Eq. (1). We also prove some lemmas that count sets of paths in highgirth regular graphs and highgirth regular expanders, which might be of independent interest. Keywordsdistance oracle; data structures; lower bounds; cellprobe model; lopsided set disjointness 1.
Query efficient implementation of graphs of bounded clique width
 Discrete Applied Mathematics
, 2003
"... ..."
Improved Algorithms for Dynamic Shortest Paths
, 2000
"... We describe algorithms for finding shortest paths and distances in outerplanar and planar digraphs that exploit the particular topology of the input graph. An important feature of our algorithms is that they can work in a dynamic environment, where the cost of any edge can be changed or the edge ca ..."
Abstract

Cited by 15 (3 self)
 Add to MetaCart
We describe algorithms for finding shortest paths and distances in outerplanar and planar digraphs that exploit the particular topology of the input graph. An important feature of our algorithms is that they can work in a dynamic environment, where the cost of any edge can be changed or the edge can be deleted. In the case of outerplanar digraphs, our data structures can be updated after any such change in only logarithmic time. A distance query is also answered in logarithmic time. In the case of planar digraphs, we give an interesting tradeoff between preprocessing, query, and update times depending on the value of a certain topological parameter of the graph. Our results can be extended to nvertex digraphs of genus O(n1−ε) for any ε>0.
Localized and compact datastructure for comparability graphs
, 2009
"... We show that every comparability graph of any twodimensional poset over n elements (a.k.a. permutation graph) can be preprocessed in O(n) time, if two linear extensions of the poset are given, to produce an O(n) space datastructure supporting distance queries in constant time. The datastructure i ..."
Abstract

Cited by 12 (5 self)
 Add to MetaCart
We show that every comparability graph of any twodimensional poset over n elements (a.k.a. permutation graph) can be preprocessed in O(n) time, if two linear extensions of the poset are given, to produce an O(n) space datastructure supporting distance queries in constant time. The datastructure is localized and given as a distance labeling, that is each vertex receives a label of O(log n) bits so that distance queries between any two vertices are answered by inspecting their labels only. This result improves the previous scheme due to Katz, Katz and Peleg [M. Katz, N.A. Katz, D. Peleg, Distance labeling schemes for wellseparated graph classes, Discrete Applied Mathematics 145 (2005) 384–402] by a log n factor. As a byproduct, our datastructure supports allpair shortestpath queries in O(d) time for distanced pairs, and so identifies in constant time the first edge along a shortest path between any source and destination. More fundamentally, we show that this optimal space and time datastructure cannot be extended for higher dimension posets. More precisely, we prove that for comparability graphs of threedimensional posets, every distance labeling scheme requires Ω(n 1/3) bit labels.
An Experimental Study of Dynamic Algorithms for Transitive Closure
 ACM JOURNAL OF EXPERIMENTAL ALGORITHMICS
, 2000
"... We perform an extensive experimental study of several dynamic algorithms for transitive closure. In particular, we implemented algorithms given by Italiano, Yellin, Cicerone et al., and two recent randomized algorithms by Henzinger and King. We propose a netuned version of Italiano's algorithms ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
We perform an extensive experimental study of several dynamic algorithms for transitive closure. In particular, we implemented algorithms given by Italiano, Yellin, Cicerone et al., and two recent randomized algorithms by Henzinger and King. We propose a netuned version of Italiano's algorithms as well as a new variant of them, both of which were always faster than any of the other implementations of the dynamic algorithms. We also considered simpleminded algorithms that were easy to implement and likely to be fast in practice. We tested and compared the above implementations on random inputs, on nonrandom inputs that are worstcase inputs for the dynamic algorithms, and on an input motivated by a realworld graph.