Results 1  10
of
92
A Comparison of Eleven Static Heuristics for Mapping a Class of Independent Tasks onto Heterogeneous Distributed Computing Systems
, 2001
"... this paper is organized as follows. Section 2 defines the computational environment parameters that were varied in the simulations. Descriptions of the 11 mapping heuristics are found in Section 3. Section 4 examines selected results from the simulation study. A list of implementation parameters and ..."
Abstract

Cited by 249 (50 self)
 Add to MetaCart
this paper is organized as follows. Section 2 defines the computational environment parameters that were varied in the simulations. Descriptions of the 11 mapping heuristics are found in Section 3. Section 4 examines selected results from the simulation study. A list of implementation parameters and procedures that could be varied for each heuristic is presented in Section 5
Multilevel kway Hypergraph Partitioning
, 1999
"... In this paper, we present a new multilevel kway hypergraph partitioning algorithm that substantially outperforms the existing stateoftheart KPM/LR algorithm for multiway partitioning, both for optimizing local as well as global objectives. Experiments on ..."
Abstract

Cited by 134 (8 self)
 Add to MetaCart
In this paper, we present a new multilevel kway hypergraph partitioning algorithm that substantially outperforms the existing stateoftheart KPM/LR algorithm for multiway partitioning, both for optimizing local as well as global objectives. Experiments on
DivideandConquer Approximation Algorithms via Spreading Metrics
, 1996
"... We present a novel divideandconquer paradigm for approximating NPhard graph optimization problems. The paradigm models graph optimization problems that satisfy two properties: First, a divideandconquer approach is applicable. Second, a fractional spreading metric is computable in polynomial tim ..."
Abstract

Cited by 103 (10 self)
 Add to MetaCart
We present a novel divideandconquer paradigm for approximating NPhard graph optimization problems. The paradigm models graph optimization problems that satisfy two properties: First, a divideandconquer approach is applicable. Second, a fractional spreading metric is computable in polynomial time. The spreading metric assigns rational lengths to either edges or vertices of the input graph, such that all subgraphs on which the optimization problem is nontrivial have large diameters. In addition, the spreading metric provides a lower bound, ø , on the cost of solving the optimization problem. We present a polynomial time approximation algorithm for problems modeled by our paradigm whose approximation factor is O (minflog ø log log ø; log k log log kg), where k denotes the number of "interesting" vertices in the problem instance, and is at most the number of vertices. We present seven problems that can be formulated to fit the paradigm. For all these problems our algorithm improves ...
A Parallel Algorithm for Multilevel Graph Partitioning and Sparse Matrix Ordering
, 1996
"... ..."
(Show Context)
A Polylogarithmic Approximation of the Minimum Bisection
, 2001
"... A bisection of a graph with n vertices is a partition of its vertices into two sets, each of size n=2. The bisection cost is the number of edges connecting the two sets. ..."
Abstract

Cited by 74 (7 self)
 Add to MetaCart
A bisection of a graph with n vertices is a partition of its vertices into two sets, each of size n=2. The bisection cost is the number of edges connecting the two sets.
Multilevel hypergraph partitioning
 Applications in VLSI design, ACM/IEEE Design Automation Conference
, 1997
"... Traditional hypergraph partitioning algorithms compute a bisection a graph such that the number of hyperedges that are cut by the partitioning is minimized and each partition has an equal number of vertices. The task of minimizing the cut can be considered as the objective and the requirement that t ..."
Abstract

Cited by 67 (2 self)
 Add to MetaCart
Traditional hypergraph partitioning algorithms compute a bisection a graph such that the number of hyperedges that are cut by the partitioning is minimized and each partition has an equal number of vertices. The task of minimizing the cut can be considered as the objective and the requirement that the partitions will be of the same size can be considered as the constraint. In this paper we extend the partitioning problem by incorporating an arbitrary number of balancing constraints. In our formulation, a vector of weights is assigned to each vertex, and the goal is to produce a bisection such that the partitioning satisfies a balancing constraint associated with each weight, while attempting to minimize the cut. We present new multiconstraint hypergraph partitioning algorithms that are based on the multilevel partitioning paradigm. We experimentally evaluate the effectiveness of our multiconstraint partitioners on a variety of synthetically generated problems.