Results 1  10
of
37
On Linear Layouts of Graphs
, 2004
"... In a total order of the vertices of a graph, two edges with no endpoint in common can be crossing, nested, or disjoint. A kstack (resp... ..."
Abstract

Cited by 31 (19 self)
 Add to MetaCart
In a total order of the vertices of a graph, two edges with no endpoint in common can be crossing, nested, or disjoint. A kstack (resp...
Stack And Queue Layouts Of Directed Acyclic Graphs: Part I
, 1996
"... . Stack layouts and queue layouts of undirected graphs have been used to model problems in fault tolerant computing and in parallel process scheduling. However, problems in parallel process scheduling are more accurately modeled by stack and queue layouts of directed acyclic graphs (dags). A stack ..."
Abstract

Cited by 26 (3 self)
 Add to MetaCart
. Stack layouts and queue layouts of undirected graphs have been used to model problems in fault tolerant computing and in parallel process scheduling. However, problems in parallel process scheduling are more accurately modeled by stack and queue layouts of directed acyclic graphs (dags). A stack layout of a dag is similar to a stack layout of an undirected graph, with the additional requirement that the nodes of the dag be in some topological order. A queue layout is defined in an analogous manner. The stacknumber (queuenumber) of a dag is the smallest number of stacks (queues) required for its stack layout (queue layout). In this paper, bounds are established on the stacknumber and queuenumber of two classes of dags: tree dags and unicyclic dags. In particular, any tree dag can be laid out in 1 stack and in at most 2 queues; and any unicyclic dag can be laid out in at most 2 stacks and in at most 2 queues. Forbidden subgraph characterizations of 1queue tree dags and 1queue cycle d...
Radial Level Planarity Testing and Embedding in Linear Time
 Journal of Graph Algorithms and Applications
, 2005
"... A graph with a given partition of the vertices on k concentric circles is radial level planar if there is a vertex permutation such that the edges can be routed strictly outwards without crossings. Radial level planarity extends level planarity, where the vertices are placed on k horizontal lines an ..."
Abstract

Cited by 19 (9 self)
 Add to MetaCart
A graph with a given partition of the vertices on k concentric circles is radial level planar if there is a vertex permutation such that the edges can be routed strictly outwards without crossings. Radial level planarity extends level planarity, where the vertices are placed on k horizontal lines and the edges are routed strictly downwards without crossings. The extension is characterised by rings, which are level nonplanar biconnected components. Our main results are linear time algorithms for radial level planarity testing and for computing an embedding. We introduce PQRtrees as a new data structure where Rnodes and associated templates for their manipulation are introduced to deal with rings. Our algorithms extend level planarity testing and embedding algorithms which use PQtrees.
Stack And Queue Layouts Of Posets
 SIAM J. Discrete Math
, 1995
"... . The stacknumber (queuenumber) of a poset is defined as the stacknumber (queuenumber) of its Hasse diagram viewed as a directed acyclic graph. Upper bounds on the queuenumber of a poset are derived in terms of its jumpnumber, its length, its width, and the queuenumber of its covering graph. A lower ..."
Abstract

Cited by 19 (4 self)
 Add to MetaCart
. The stacknumber (queuenumber) of a poset is defined as the stacknumber (queuenumber) of its Hasse diagram viewed as a directed acyclic graph. Upper bounds on the queuenumber of a poset are derived in terms of its jumpnumber, its length, its width, and the queuenumber of its covering graph. A lower bound of \Omega\Gamma p n) is shown for the queuenumber of the class of nelement planar posets. The queuenumber of a planar poset is shown to be within a small constant factor of its width. The stacknumber of nelement posets with planar covering graphs is shown to be \Theta(n). These results exhibit sharp differences between the stacknumber and queuenumber of posets as well as between the stacknumber (queuenumber) of a poset and the stacknumber (queuenumber) of its covering graph. Key words. poset, queue layout, stack layout, book embedding, Hasse diagram, jumpnumber AMS subject classifications. 05C99, 68R10, 94C15 1. Introduction. Stack and queue layouts of undirected graphs appear ...
Treepartitions of ktrees with applications in graph layout
 Proc. 29th Workshop on Graph Theoretic Concepts in Computer Science (WG’03
, 2002
"... Abstract. A treepartition of a graph is a partition of its vertices into ‘bags ’ such that contracting each bag into a single vertex gives a forest. It is proved that every ktree has a treepartition such that each bag induces a (k − 1)tree, amongst other properties. Applications of this result t ..."
Abstract

Cited by 16 (11 self)
 Add to MetaCart
Abstract. A treepartition of a graph is a partition of its vertices into ‘bags ’ such that contracting each bag into a single vertex gives a forest. It is proved that every ktree has a treepartition such that each bag induces a (k − 1)tree, amongst other properties. Applications of this result to two wellstudied models of graph layout are presented. First it is proved that graphs of bounded treewidth have bounded queuenumber, thus resolving an open problem due to Ganley and Heath [2001] and disproving a conjecture of Pemmaraju [1992]. This result provides renewed hope for the positive resolution of a number of open problems regarding queue layouts. In a related result, it is proved that graphs of bounded treewidth have threedimensional straightline grid drawings with linear volume, which represents the largest known class of graphs with such drawings. 1
Characterization of unlabeled level planar trees
 14TH SYMPOSIUM ON GRAPH DRAWING (GD), VOLUME 4372 OF LECTURE NOTES IN COMPUTER SCIENCE
, 2006
"... Consider a graph G drawn in the plane so that each vertex lies on a distinct horizontal line ℓj = {(x, j)  x ∈ R}. The bijection φ that maps the set of n vertices V to a set of distinct horizontal lines ℓj forms a labeling of the vertices. Such a graph G with the labeling φ is called an nlevel gr ..."
Abstract

Cited by 13 (7 self)
 Add to MetaCart
Consider a graph G drawn in the plane so that each vertex lies on a distinct horizontal line ℓj = {(x, j)  x ∈ R}. The bijection φ that maps the set of n vertices V to a set of distinct horizontal lines ℓj forms a labeling of the vertices. Such a graph G with the labeling φ is called an nlevel graph and is said to be nlevel planar if it can be drawn with straightline edges and no crossings while keeping each vertex on its own level. In this paper, we consider the class of trees that are nlevel planar regardless of their labeling. We call such trees unlabeled level planar (ULP). Our contributions are threefold. First, we provide a complete characterization of ULP trees in terms of a pair of forbidden subtrees. Second, we show how to draw ULP trees in linear time. Third, we provide a linear time recognition algorithm for ULP trees.
Queue layouts, treewidth, and threedimensional graph drawing
 Proc. 22nd Foundations of Software Technology and Theoretical Computer Science (FST TCS '02
, 2002
"... Abstract. A threedimensional (straightline grid) drawing of a graph represents the vertices by points in Z 3 and the edges by noncrossing line segments. This research is motivated by the following open problem due to Felsner, Liotta, and Wismath [Graph Drawing ’01, Lecture Notes in Comput. Sci., ..."
Abstract

Cited by 12 (6 self)
 Add to MetaCart
Abstract. A threedimensional (straightline grid) drawing of a graph represents the vertices by points in Z 3 and the edges by noncrossing line segments. This research is motivated by the following open problem due to Felsner, Liotta, and Wismath [Graph Drawing ’01, Lecture Notes in Comput. Sci., 2002]: does every nvertex planar graph have a threedimensional drawing with O(n) volume? We prove that this question is almost equivalent to an existing onedimensional graph layout problem. A queue layout consists of a linear order σ of the vertices of a graph, and a partition of the edges into queues, such that no two edges in the same queue are nested with respect to σ. The minimum number of queues in a queue layout of a graph is its queuenumber. Let G be an nvertex member of a proper minorclosed family of graphs (such as a planar graph). We prove that G has a O(1) × O(1) × O(n) drawing if and only if G has O(1) queuenumber. Thus the above question is almost equivalent to an open problem of Heath, Leighton, and Rosenberg [SIAM J. Discrete Math., 1992], who ask whether every planar graph has O(1) queuenumber? We also present partial solutions to an open problem of Ganley and Heath [Discrete Appl. Math., 2001], who ask whether graphs of bounded treewidth have bounded queuenumber? We prove that graphs with bounded pathwidth, or both bounded treewidth and bounded maximum degree, have bounded queuenumber. As a corollary we obtain threedimensional drawings with optimal O(n) volume, for seriesparallel graphs, and graphs with both bounded treewidth and bounded maximum degree. 1
Recognizing LeveledPlanar Dags in Linear Time
 In Proc. Graph Drawing, GD 1995, volume 1027 of LNCS
, 1996
"... this paper we present a linear time algorithm for the problem of determining if a given dag has a directed leveledplanar embedding. Our algorithm uses a variation of the PQtree data structure introduced by Booth and Lueker [2]. One motivation for our algorithm is that it can be extended to recogni ..."
Abstract

Cited by 11 (1 self)
 Add to MetaCart
this paper we present a linear time algorithm for the problem of determining if a given dag has a directed leveledplanar embedding. Our algorithm uses a variation of the PQtree data structure introduced by Booth and Lueker [2]. One motivation for our algorithm is that it can be extended to recognize 1queue dags, thus answering an open question in [6]. Combinatorial and algorithmic results related to queue layouts of dags and posets can be found in [4, 7, 5]. Our algorithms also contrasts leveledplanar undirected graphs and leveledplanar dags, since the problem of recognizing leveledplanar graphs has been shown to be NPcomplete by Heath and Rosenberg [8]. Another motivation comes from the importance of the above problem in the area of graph drawing. Our result extends the work of Di Battista and Nardelli [1], Chandramouli and Diwan [3], and Hutton and Lubiw [9]. These authors assume solve the problem assuming certain restrictions on the given dag and leave the general problem open. The organization of the rest of the paper is as follows. Section 2 discusses the nature of the problem and outlines our approach. Section 3 defines the data
Scheduling TreeDags Using FIFO Queues: A Controlmemory Tradeoff
"... We study here a combinatorial problem that is motivated by a genre of architectureindependent scheduler for parallel computations. Such schedulers are often used, for instance, when computations are being done by a cooperating network of workstations. The results we obtain expose a controlmemory t ..."
Abstract

Cited by 11 (0 self)
 Add to MetaCart
We study here a combinatorial problem that is motivated by a genre of architectureindependent scheduler for parallel computations. Such schedulers are often used, for instance, when computations are being done by a cooperating network of workstations. The results we obtain expose a controlmemory tradeoff for such schedulers, when the computation being scheduled has the structure of a complete binary tree. The combinatorial problem takes the following form. Consider, for each integer N =2 n, a family of n algorithms for linearizing the Nleaf complete binary tree in such away that each nonleaf node precedes its children. For each k 2f1 � 2�:::�ng, the kth algorithm in the family employs k FIFO queues to e ect the linearization, in a manner specified later (cf., [1], [5] [7]). In this paper, we expose a tradeoff between the number of queues used by eachofthen algorithms  which we view as measuring the control complexity of the algorithm  and the memory requirements of the algorithms, as embodied in the required capacity ofthe largestcapacity queue. Specifically, we prove that, for each k 2f1 � 2�:::�ng, the maximum perqueue capacity, call it Q k(N), for a kqueue algorithm that linearizes an Nleaf complete binary tree satisfies e