Results 1 
2 of
2
Radial Level Planarity Testing and Embedding in Linear Time
 Journal of Graph Algorithms and Applications
, 2005
"... A graph with a given partition of the vertices on k concentric circles is radial level planar if there is a vertex permutation such that the edges can be routed strictly outwards without crossings. Radial level planarity extends level planarity, where the vertices are placed on k horizontal lines an ..."
Abstract

Cited by 18 (8 self)
 Add to MetaCart
(Show Context)
A graph with a given partition of the vertices on k concentric circles is radial level planar if there is a vertex permutation such that the edges can be routed strictly outwards without crossings. Radial level planarity extends level planarity, where the vertices are placed on k horizontal lines and the edges are routed strictly downwards without crossings. The extension is characterised by rings, which are level nonplanar biconnected components. Our main results are linear time algorithms for radial level planarity testing and for computing an embedding. We introduce PQRtrees as a new data structure where Rnodes and associated templates for their manipulation are introduced to deal with rings. Our algorithms extend level planarity testing and embedding algorithms which use PQtrees.
Track Planarity Testing and Embedding
 PROC. SOFTWARE SEMINAR: THEORY AND PRACTICE OF INFORMATICS, SOFSEM 2004
, 2004
"... A track graph is a graph with its vertex set partitioned into horizontal levels. It is track planar if there are permutations of the vertices on each level such that all edges can be drawn as weak monotone curves without crossings. The novelty and generalisation over level planar graphs is that ..."
Abstract

Cited by 4 (3 self)
 Add to MetaCart
A track graph is a graph with its vertex set partitioned into horizontal levels. It is track planar if there are permutations of the vertices on each level such that all edges can be drawn as weak monotone curves without crossings. The novelty and generalisation over level planar graphs is that horizontal edges connecting consecutive vertices on the same level are allowed. We show that track planarity can be reduced to level planarity in linear time. Hence, there are time algorithms for the track planarity test and for the computation of a track planar embedding.