Results 1  10
of
146
ATOMIC DECOMPOSITION BY BASIS PURSUIT
, 1995
"... The TimeFrequency and TimeScale communities have recently developed a large number of overcomplete waveform dictionaries  stationary wavelets, wavelet packets, cosine packets, chirplets, and warplets, to name a few. Decomposition into overcomplete systems is not unique, and several methods for d ..."
Abstract

Cited by 1799 (53 self)
 Add to MetaCart
The TimeFrequency and TimeScale communities have recently developed a large number of overcomplete waveform dictionaries  stationary wavelets, wavelet packets, cosine packets, chirplets, and warplets, to name a few. Decomposition into overcomplete systems is not unique, and several methods for decomposition have been proposed, including the Method of Frames (MOF), Matching Pursuit (MP), and, for special dictionaries, the Best Orthogonal Basis (BOB). Basis Pursuit (BP) is a principle for decomposing a signal into an "optimal" superposition of dictionary elements, where optimal means having the smallest l 1 norm of coefficients among all such decompositions. We give examples exhibiting several advantages over MOF, MP and BOB, including better sparsity, and superresolution. BP has interesting relations to ideas in areas as diverse as illposed problems, in abstract harmonic analysis, total variation denoising, and multiscale edge denoising. Basis Pursuit in highly overcomplete dictionaries leads to largescale optimization problems. With signals of length 8192 and a wavelet packet dictionary, one gets an equivalent linear program of size 8192 by 212,992. Such problems can be attacked successfully only because of recent advances in linear programming by interiorpoint methods. We obtain reasonable success with a primaldual logarithmic barrier method and conjugategradient solver.
Stable recovery of sparse overcomplete representations in the presence of noise
 IEEE TRANS. INFORM. THEORY
, 2006
"... Overcomplete representations are attracting interest in signal processing theory, particularly due to their potential to generate sparse representations of signals. However, in general, the problem of finding sparse representations must be unstable in the presence of noise. This paper establishes t ..."
Abstract

Cited by 318 (20 self)
 Add to MetaCart
Overcomplete representations are attracting interest in signal processing theory, particularly due to their potential to generate sparse representations of signals. However, in general, the problem of finding sparse representations must be unstable in the presence of noise. This paper establishes the possibility of stable recovery under a combination of sufficient sparsity and favorable structure of the overcomplete system. Considering an ideal underlying signal that has a sufficiently sparse representation, it is assumed that only a noisy version of it can be observed. Assuming further that the overcomplete system is incoherent, it is shown that the optimally sparse approximation to the noisy data differs from the optimally sparse decomposition of the ideal noiseless signal by at most a constant multiple of the noise level. As this optimalsparsity method requires heavy (combinatorial) computational effort, approximation algorithms are considered. It is shown that similar stability is also available using the basis and the matching pursuit algorithms. Furthermore, it is shown that these methods result in sparse approximation of the noisy data that contains only terms also appearing in the unique sparsest representation of the ideal noiseless sparse signal.
Regularization networks and support vector machines
 Advances in Computational Mathematics
, 2000
"... Regularization Networks and Support Vector Machines are techniques for solving certain problems of learning from examples – in particular the regression problem of approximating a multivariate function from sparse data. Radial Basis Functions, for example, are a special case of both regularization a ..."
Abstract

Cited by 288 (34 self)
 Add to MetaCart
Regularization Networks and Support Vector Machines are techniques for solving certain problems of learning from examples – in particular the regression problem of approximating a multivariate function from sparse data. Radial Basis Functions, for example, are a special case of both regularization and Support Vector Machines. We review both formulations in the context of Vapnik’s theory of statistical learning which provides a general foundation for the learning problem, combining functional analysis and statistics. The emphasis is on regression: classification is treated as a special case.
An equivalence between sparse approximation and Support Vector Machines
 A.I. Memo 1606, MIT Arti cial Intelligence Laboratory
, 1997
"... This publication can be retrieved by anonymous ftp to publications.ai.mit.edu. The pathname for this publication is: aipublications/15001999/AIM1606.ps.Z This paper shows a relationship between two di erent approximation techniques: the Support Vector Machines (SVM), proposed by V.Vapnik (1995), ..."
Abstract

Cited by 216 (7 self)
 Add to MetaCart
This publication can be retrieved by anonymous ftp to publications.ai.mit.edu. The pathname for this publication is: aipublications/15001999/AIM1606.ps.Z This paper shows a relationship between two di erent approximation techniques: the Support Vector Machines (SVM), proposed by V.Vapnik (1995), and a sparse approximation scheme that resembles the Basis Pursuit DeNoising algorithm (Chen, 1995 � Chen, Donoho and Saunders, 1995). SVM is a technique which can be derived from the Structural Risk Minimization Principle (Vapnik, 1982) and can be used to estimate the parameters of several di erent approximation schemes, including Radial Basis Functions, algebraic/trigonometric polynomials, Bsplines, and some forms of Multilayer Perceptrons. Basis Pursuit DeNoising is a sparse approximation technique, in which a function is reconstructed by using a small number of basis functions chosen from a large set (the dictionary). We show that, if the data are noiseless, the modi ed version of Basis Pursuit DeNoising proposed in this paper is equivalent to SVM in the following sense: if applied to the same data set the two techniques give the same solution, which is obtained by solving the same quadratic programming problem. In the appendix we also present a derivation of the SVM technique in the framework of regularization theory, rather than statistical learning theory, establishing a connection between SVM, sparse approximation and regularization theory.
Sparse Greedy Matrix Approximation for Machine Learning
, 2000
"... In kernel based methods such as Regularization Networks large datasets pose signi cant problems since the number of basis functions required for an optimal solution equals the number of samples. We present a sparse greedy approximation technique to construct a compressed representation of the ..."
Abstract

Cited by 187 (11 self)
 Add to MetaCart
In kernel based methods such as Regularization Networks large datasets pose signi cant problems since the number of basis functions required for an optimal solution equals the number of samples. We present a sparse greedy approximation technique to construct a compressed representation of the design matrix. Experimental results are given and connections to KernelPCA, Sparse Kernel Feature Analysis, and Matching Pursuit are pointed out. 1. Introduction Many recent advances in machine learning such as Support Vector Machines [Vapnik, 1995], Regularization Networks [Girosi et al., 1995], or Gaussian Processes [Williams, 1998] are based on kernel methods. Given an msample f(x 1 ; y 1 ); : : : ; (x m ; y m )g of patterns x i 2 X and target values y i 2 Y these algorithms minimize the regularized risk functional min f2H R reg [f ] = 1 m m X i=1 c(x i ; y i ; f(x i )) + 2 kfk 2 H : (1) Here H denotes a reproducing kernel Hilbert space (RKHS) [Aronszajn, 1950],...
Kernel PCA and DeNoising in Feature Spaces
 ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 11
, 1999
"... Kernel PCA as a nonlinear feature extractor has proven powerful as a preprocessing step for classification algorithms. But it can also be considered as a natural generalization of linear principal component analysis. This gives rise to the question how to use nonlinear features for data compress ..."
Abstract

Cited by 133 (13 self)
 Add to MetaCart
Kernel PCA as a nonlinear feature extractor has proven powerful as a preprocessing step for classification algorithms. But it can also be considered as a natural generalization of linear principal component analysis. This gives rise to the question how to use nonlinear features for data compression, reconstruction, and denoising, applications common in linear PCA. This is a nontrivial task, as the results provided by kernel PCA live in some high dimensional feature space and need not have preimages in input space. This work presents ideas for finding approximate preimages, focusing on Gaussian kernels, and shows experimental results using these preimages in data reconstruction and denoising on toy examples as well as on real world data.
Sparse representation for color image restoration
 the IEEE Trans. on Image Processing
, 2007
"... Sparse representations of signals have drawn considerable interest in recent years. The assumption that natural signals, such as images, admit a sparse decomposition over a redundant dictionary leads to efficient algorithms for handling such sources of data. In particular, the design of well adapted ..."
Abstract

Cited by 118 (27 self)
 Add to MetaCart
Sparse representations of signals have drawn considerable interest in recent years. The assumption that natural signals, such as images, admit a sparse decomposition over a redundant dictionary leads to efficient algorithms for handling such sources of data. In particular, the design of well adapted dictionaries for images has been a major challenge. The KSVD has been recently proposed for this task [1], and shown to perform very well for various grayscale image processing tasks. In this paper we address the problem of learning dictionaries for color images and extend the KSVDbased grayscale image denoising algorithm that appears in [2]. This work puts forward ways for handling nonhomogeneous noise and missing information, paving the way to stateoftheart results in applications such as color image denoising, demosaicing, and inpainting, as demonstrated in this paper. EDICS Category: COLCOLR (Color processing) I.
Sparse Greedy Gaussian Process Regression
 Advances in Neural Information Processing Systems 13
, 2001
"... We present a simple sparse greedy technique to approximate the maximum a posteriori estimate of Gaussian Processes with much improved scaling behaviour in the sample size m. In particular, computational requirements are O(n m), storage is O(nm), the cost for prediction is O(n) and the cost to comput ..."
Abstract

Cited by 114 (1 self)
 Add to MetaCart
We present a simple sparse greedy technique to approximate the maximum a posteriori estimate of Gaussian Processes with much improved scaling behaviour in the sample size m. In particular, computational requirements are O(n m), storage is O(nm), the cost for prediction is O(n) and the cost to compute confidence bounds is O(nm), where n m. We show how to compute a stopping criterion, give bounds on the approximation error, and show applications to large scale problems.
Wedgelets: nearlyminimax estimation of edges
 Ann. Statist
, 1999
"... We study a simple “Horizon Model ” for the problem of recovering an image from noisy data; in this model the image has an edge with αHölder regularity. Adopting the viewpoint of computational harmonic analysis, we develop an overcomplete collection of atoms called wedgelets, dyadically organized in ..."
Abstract

Cited by 104 (8 self)
 Add to MetaCart
We study a simple “Horizon Model ” for the problem of recovering an image from noisy data; in this model the image has an edge with αHölder regularity. Adopting the viewpoint of computational harmonic analysis, we develop an overcomplete collection of atoms called wedgelets, dyadically organized indicator functions with a variety of locations, scales, and orientations. The wedgelet representation provides nearlyoptimal representations of objects in the Horizon model, as measured by minimax description length. We show how to rapidly compute a wedgelet approximation to noisy data by finding a special edgeletdecorated recursive partition which minimizes a complexitypenalized sum of squares. This estimate, using sufficient subpixel resolution, achieves nearly the minimax meansquared error in the Horizon Model. In fact, the method is adaptive in the sense that it achieves nearly the minimax risk for any value of the unknown degree of regularity of the Horizon, 1 ≤ α ≤ 2. Wedgelet analysis and denoising may be used successfully outside the Horizon model. We study images modelled as indicators of starshaped sets with smooth boundaries and show that complexitypenalized wedgelet partitioning achieves nearly the minimax risk in that setting also.