Results 1  10
of
55
The complexity of analog computation
 in Math. and Computers in Simulation 28(1986
"... We ask if analog computers can solve NPcomplete problems efficiently. Regarding this as unlikely, we formulate a strong version of Church’s Thesis: that any analog computer can be simulated efficiently (in polynomial time) by a digital computer. From this assumption and the assumption that P ≠ NP w ..."
Abstract

Cited by 39 (0 self)
 Add to MetaCart
(Show Context)
We ask if analog computers can solve NPcomplete problems efficiently. Regarding this as unlikely, we formulate a strong version of Church’s Thesis: that any analog computer can be simulated efficiently (in polynomial time) by a digital computer. From this assumption and the assumption that P ≠ NP we can draw conclusions about the operation of physical devices used for computation. An NPcomplete problem, 3SAT, is reduced to the problem of checking whether a feasible point is a local optimum of an optimization problem. A mechanical device is proposed for the solution of this problem. It encodes variables as shaft angles and uses gears and smooth cams. If we grant Strong Church’s Thesis, that P ≠ NP, and a certain ‘‘Downhill Principle’ ’ governing the physical behavior of the machine, we conclude that it cannot operate successfully while using only polynomial resources. We next prove Strong Church’s Thesis for a class of analog computers described by wellbehaved ordinary differential equations, which we can take as representing part of classical mechanics. We conclude with a comment on the recently discovered connection between spin glasses and combinatorial optimization. 1.
Beyond The Universal Turing Machine
, 1998
"... We describe an emerging field, that of nonclassical computability and nonclassical computing machinery. According to the nonclassicist, the set of welldefined computations is not exhausted by the computations that can be carried out by a Turing machine. We provide an overview of the field and a phi ..."
Abstract

Cited by 31 (1 self)
 Add to MetaCart
We describe an emerging field, that of nonclassical computability and nonclassical computing machinery. According to the nonclassicist, the set of welldefined computations is not exhausted by the computations that can be carried out by a Turing machine. We provide an overview of the field and a philosophical defence of its foundations.
Computability with Polynomial Differential Equations
, 2007
"... In this paper, we show that there are Initial Value Problems defined with polynomial ordinary differential equations that can simulate universal Turing machines in the presence of bounded noise. The polynomial ODE defining the IVP is explicitly obtained and the simulation is performed in real time. ..."
Abstract

Cited by 22 (14 self)
 Add to MetaCart
In this paper, we show that there are Initial Value Problems defined with polynomial ordinary differential equations that can simulate universal Turing machines in the presence of bounded noise. The polynomial ODE defining the IVP is explicitly obtained and the simulation is performed in real time.
Hypercomputation and the Physical ChurchTuring Thesis
, 2003
"... A version of the ChurchTuring Thesis states that every e#ectively realizable physical system can be defined by Turing Machines (`Thesis P'); in this formulation the Thesis appears an empirical, more than a logicomathematical, proposition. We review the main approaches to computation beyond Tu ..."
Abstract

Cited by 21 (0 self)
 Add to MetaCart
A version of the ChurchTuring Thesis states that every e#ectively realizable physical system can be defined by Turing Machines (`Thesis P'); in this formulation the Thesis appears an empirical, more than a logicomathematical, proposition. We review the main approaches to computation beyond Turing definability (`hypercomputation'): supertask, nonwellfounded, analog, quantum, and retrocausal computation. These models depend on infinite computation, explicitly or implicitly, and appear physically implausible; moreover, even if infinite computation were realizable, the Halting Problem would not be a#ected. Therefore, Thesis P is not essentially di#erent from the standard ChurchTuring Thesis.
Robust simulations of Turing machines with analytic maps and flows
 CiE 2005: New Computational Paradigms, LNCS 3526
, 2005
"... Abstract. In this paper, we show that closedform analytic maps and flows can simulate Turing machines in an errorrobust manner. The maps and ODEs defining the flows are explicitly obtained and the simulation is performed in real time. 1 ..."
Abstract

Cited by 21 (7 self)
 Add to MetaCart
(Show Context)
Abstract. In this paper, we show that closedform analytic maps and flows can simulate Turing machines in an errorrobust manner. The maps and ODEs defining the flows are explicitly obtained and the simulation is performed in real time. 1
Computations via experiments with kinematic systems
, 2004
"... Consider the idea of computing functions using experiments with kinematic systems. We prove that for any set A of natural numbers there exists a 2dimensional kinematic system BA with a single particle P whose observable behaviour decides n ∈ A for all n ∈ N. The system is a bagatelle and can be des ..."
Abstract

Cited by 15 (4 self)
 Add to MetaCart
(Show Context)
Consider the idea of computing functions using experiments with kinematic systems. We prove that for any set A of natural numbers there exists a 2dimensional kinematic system BA with a single particle P whose observable behaviour decides n ∈ A for all n ∈ N. The system is a bagatelle and can be designed to operate under (a) Newtonian mechanics or (b) Relativistic mechanics. The theorem proves that valid models of mechanical systems can compute all possible functions on discrete data. The proofs show how any information (coded by some A) can be embedded in the structure of a simple kinematic system and retrieved by simple observations of its behaviour. We reflect on this undesirable situation and argue that mechanics must be extended to include a formal theory for performing experiments, which includes the construction of systems. We conjecture that in such an extended mechanics the functions computed by experiments are precisely those computed by algorithms. We set these theorems and ideas in the context of the literature on the general problem “Is physical behaviour computable? ” and state some open problems.
Can Newtonian systems, bounded in space, time, mass and energy compute all functions?
"... In the theoretical analysis of the physical basis of computation there is a great deal of confusion and controversy (e.g., on the existence of hypercomputers). First, we present a methodology for making a theoretical analysis of computation by physical systems. We focus on the construction and anal ..."
Abstract

Cited by 14 (4 self)
 Add to MetaCart
(Show Context)
In the theoretical analysis of the physical basis of computation there is a great deal of confusion and controversy (e.g., on the existence of hypercomputers). First, we present a methodology for making a theoretical analysis of computation by physical systems. We focus on the construction and analysis of simple examples that are models of simple subtheories of physical theories. Then we illustrate the methodology, by presenting a simple example for Newtonian Kinematics, and a critique that leads to a substantial extension of the methodology. The example proves that for any set A of natural numbers there exists a 3dimensional Newtonian kinematic system MA, with an infinite family of particles Pn whose total mass is bounded, and whose observable behaviour can decide whether or not n ∈ A for all n ∈ N in constant time. In particular, the example implies that simple Newtonian kinematic systems that are bounded in space, time, mass and energy can compute all possible sets and functions on discrete data. The system is a form of marble run and is a model of a small fragment of Newtonian Kinematics. Next, we use the example to extend the methodology. The marble run shows that a formal theory for computation by physical systems needs strong conditions on the notion of experimental procedure and, specifically, on methods for the construction of equipment. We propose to extend the methodology by defining languages to express experimental procedures and the construction of equipment. We conjecture that the functions computed by experimental computation in Newtonian Kinematics are “equivalent” to those computed by algorithms, i.e. the partial computable functions.
Computational complexity with experiments as oracles
, 2008
"... We discuss combining physical experiments with machine computations and introduce a form of analoguedigital Turing machine. We examine in detail a case study where an experimental procedure based on Newtonian kinematics is combined with a class of Turing machines. Three forms of analoguedigital ma ..."
Abstract

Cited by 13 (10 self)
 Add to MetaCart
(Show Context)
We discuss combining physical experiments with machine computations and introduce a form of analoguedigital Turing machine. We examine in detail a case study where an experimental procedure based on Newtonian kinematics is combined with a class of Turing machines. Three forms of analoguedigital machine are studied, in which physical parameters can be set exactly and approximately. Using nonuniform complexity theory, and some probability, we prove theorems that show that these machines can compute more than classical Turing machines. 1
Transcending Turing Computability
 Minds and Machines
, 2001
"... It has been argued that neural networks and other forms of analog computation may transcend the limits of Turing computation; proofs have been oered on both sides, subject to diering assumptions. In this report I argue that the important comparisons between the two models of computation are not so m ..."
Abstract

Cited by 13 (8 self)
 Add to MetaCart
It has been argued that neural networks and other forms of analog computation may transcend the limits of Turing computation; proofs have been oered on both sides, subject to diering assumptions. In this report I argue that the important comparisons between the two models of computation are not so much mathematical as epistemological. The Turing machine model makes assumptions about information representation and processing that are badly matched to the realities of natural computation (information representation and processing in or inspired by natural systems). This points to the need for new models of computation addressing issues orthogonal to those that have occupied the traditional theory of computation. Keywords: computability, Turing machine, hypercomputation, natural computation, biocomputation, analog computer, analog computation, continuous computation 1.