Results 11  20
of
23
MATHEMATICAL COMPUTABILITY QUESTIONS FOR SOME CLASSES OF LINEAR AND NONLINEAR DIFFERENTIAL EQUATIONS ORIGINATED FROM HILBERT’S TENTH PROBLEM
, 2005
"... Abstract. Inspired by Quantum Mechanics, we reformulate Hilbert’s tenth problem in the domain of integer arithmetics into problems involving either a set of infinitelycoupled nonlinear differential equations or a class of linear Schrödinger equations with some appropriate timedependent Hamiltonian ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
Abstract. Inspired by Quantum Mechanics, we reformulate Hilbert’s tenth problem in the domain of integer arithmetics into problems involving either a set of infinitelycoupled nonlinear differential equations or a class of linear Schrödinger equations with some appropriate timedependent Hamiltonians. We then raise the questions whether these two classes of differential equations are computable or not in some computation models of computable analysis. These are nontrivial and important questions given that: (i) not all computation models of computable analysis are equivalent, unlike the case with classical recursion theory; (ii) and not all models necessarily and inevitably reduce computability of real functions to discrete computations on Turing machines. However unlikely the positive answers to our computability questions, their existence should deserve special attention and be satisfactorily settled since such positive answers may also have interesting logical consequence back in the classical recursion theory for the ChurchTuring thesis.
Computational Power of Infinite Quantum Parallelism
 pp.2057–2071 in International Journal of Theoretical Physics vol.44:11
, 2005
"... Recent works have independently suggested that quantum mechanics might permit procedures that fundamentally transcend the power of Turing Machines as well as of ‘standard ’ Quantum Computers. These approaches rely on and indicate that quantum mechanics seems to support some infinite variant of class ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
Recent works have independently suggested that quantum mechanics might permit procedures that fundamentally transcend the power of Turing Machines as well as of ‘standard ’ Quantum Computers. These approaches rely on and indicate that quantum mechanics seems to support some infinite variant of classical parallel computing. We compare this new one with other attempts towards hypercomputation by separating (1) its computing capabilities from (2) realizability issues. The first are shown to coincide with recursive enumerability; the second are considered in analogy to ‘existence’ in mathematical logic. KEY WORDS: Hypercomputation; quantum mechanics; recursion theory; infinite parallelism.
How to acknowledge hypercomputation?
, 2007
"... We discuss the question of how to operationally validate whether or not a “hypercomputer” performs better than the known discrete computational models. ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
We discuss the question of how to operationally validate whether or not a “hypercomputer” performs better than the known discrete computational models.
Series Preproceedings of the Workshop “Physics and Computation ” 2008
, 2008
"... In the 1940s, two different views of the brain and the computer were equally important. One was the analog technology and theory that had emerged before the war. The other was the digital technology and theory that was to become the main paradigm of computation. 1 The outcome of the contest between ..."
Abstract
 Add to MetaCart
In the 1940s, two different views of the brain and the computer were equally important. One was the analog technology and theory that had emerged before the war. The other was the digital technology and theory that was to become the main paradigm of computation. 1 The outcome of the contest between these two competing views derived from technological and epistemological arguments. While digital technology was improving dramatically, the technology of analog machines had already reached a significant level of development. In particular, digital technology offered a more effective way to control the precision of calculations. But the epistemological discussion was, at the time, equally relevant. For the supporters of the analog computer, the digital model — which can only process information transformed and coded in binary — wouldn’t be suitable to represent certain kinds of continuous variation that help determine brain functions. With analog machines, on the contrary, there would be few or no layers between natural objects and the work and structure of computation (cf. [4, 1]). The 1942–52 Macy Conferences in cybernetics helped to validate digital theory and logic as legitimate ways to think about the brain and the machine [4]. In particular, those conferences helped made McCullochPitts ’ digital model
and
, 712
"... We discuss the question of how to operationally validate whether or not a “hypercomputer ” performs better than the known discrete computational models. 1 ..."
Abstract
 Add to MetaCart
We discuss the question of how to operationally validate whether or not a “hypercomputer ” performs better than the known discrete computational models. 1
Does Quantum Mechanics allow for Infinite Parallelism?
, 2004
"... Recent works have independently suggested that Quantum Mechanics might permit for procedures that transcend the power of Turing Machines as well as of ‘standard ’ Quantum Computers. These approaches rely on and indicate that Quantum Mechanics seems to support some infinite variant of classical paral ..."
Abstract
 Add to MetaCart
Recent works have independently suggested that Quantum Mechanics might permit for procedures that transcend the power of Turing Machines as well as of ‘standard ’ Quantum Computers. These approaches rely on and indicate that Quantum Mechanics seems to support some infinite variant of classical parallel computing. We compare this new one with other attempts towards hypercomputation by separating 1) its principal computing capabilities from 2) realizability issues. The first are shown to coincide with recursive enumerability; the second are considered in analogy to ‘existence ’ in mathematical logic.
(3)
, 2006
"... Abstract. We study a set of truncated matrices, given by Smith [8], in connection to an identification criterion for the ground state in our proposed quantum adiabatic algorithm for Hilbert’s tenth problem. We identify the origin of the trouble for this truncated example and show that for a suitable ..."
Abstract
 Add to MetaCart
Abstract. We study a set of truncated matrices, given by Smith [8], in connection to an identification criterion for the ground state in our proposed quantum adiabatic algorithm for Hilbert’s tenth problem. We identify the origin of the trouble for this truncated example and show that for a suitable choice of some parameter it can always be removed. We also argue that it is only an artefact of the truncation of the underlying Hilbert spaces, through showing its sensitivity to different boundary conditions available for such a truncation. It is maintained that the criterion, in general, should be applicable provided certain conditions are satisfied. We also point out that, apart from this one, other criteria serving the same identification purpose may also be available. In a proposal of a quantum adiabatic algorithm for Hilbert’s tenth problem [5], we employ an adiabatic process with a timedependent Hamiltonian (1) H(t) = (1 − t/T)HI + (t/T)HP. Here t is time and this Hamiltonian metamorphoses from HI when t = 0 to HP when t = T. The final Hamiltonian HP encodes the Diophantine equation in consideration, while the initial HI is universal and independent of the Diophantine equation, except only on its number of variables K. The process is captured by the Schrödinger equation (2) ∂tψ(t)〉
Contents
, 2008
"... Different types of physical unknowables are discussed. Provable unknowables are derived from reduction to problems which are known to be recursively unsolvable. Recent series solutions to the nbody problem and related to it, chaotic systems, may have no computable radius of convergence. Quantum unk ..."
Abstract
 Add to MetaCart
Different types of physical unknowables are discussed. Provable unknowables are derived from reduction to problems which are known to be recursively unsolvable. Recent series solutions to the nbody problem and related to it, chaotic systems, may have no computable radius of convergence. Quantum unknowables include the random occurrence of single events, complementarity and value indefiniteness.