Results 1  10
of
19
Beyond The Universal Turing Machine
, 1998
"... We describe an emerging field, that of nonclassical computability and nonclassical computing machinery. According to the nonclassicist, the set of welldefined computations is not exhausted by the computations that can be carried out by a Turing machine. We provide an overview of the field and a phi ..."
Abstract

Cited by 31 (1 self)
 Add to MetaCart
We describe an emerging field, that of nonclassical computability and nonclassical computing machinery. According to the nonclassicist, the set of welldefined computations is not exhausted by the computations that can be carried out by a Turing machine. We provide an overview of the field and a philosophical defence of its foundations.
Hypercomputation and the Physical ChurchTuring Thesis
, 2003
"... A version of the ChurchTuring Thesis states that every e#ectively realizable physical system can be defined by Turing Machines (`Thesis P'); in this formulation the Thesis appears an empirical, more than a logicomathematical, proposition. We review the main approaches to computation beyond Turing ..."
Abstract

Cited by 21 (0 self)
 Add to MetaCart
A version of the ChurchTuring Thesis states that every e#ectively realizable physical system can be defined by Turing Machines (`Thesis P'); in this formulation the Thesis appears an empirical, more than a logicomathematical, proposition. We review the main approaches to computation beyond Turing definability (`hypercomputation'): supertask, nonwellfounded, analog, quantum, and retrocausal computation. These models depend on infinite computation, explicitly or implicitly, and appear physically implausible; moreover, even if infinite computation were realizable, the Halting Problem would not be a#ected. Therefore, Thesis P is not essentially di#erent from the standard ChurchTuring Thesis.
Is wave propagation computable or can wave computers beat the Turing machine?
 PROC. LONDON MATH SOC
, 2002
"... By the ChurchTuring Thesis a numerical function is computable by a physical device if and only if it is computable by a Turing machine. The `if'part is plausible since every (sufficiently small) Turing machine can be simulated by a computer program which operates correctly as long as sufficient ti ..."
Abstract

Cited by 20 (3 self)
 Add to MetaCart
By the ChurchTuring Thesis a numerical function is computable by a physical device if and only if it is computable by a Turing machine. The `if'part is plausible since every (sufficiently small) Turing machine can be simulated by a computer program which operates correctly as long as sufficient time and storage
Computational complexity of the landscape
 I
"... Abstract: We study the computational complexity of the physical problem of finding vacua of string theory which agree with data, such as the cosmological constant, and show that such problems are typically NP hard. In particular, we prove that in the BoussoPolchinski model, the problem is NP comple ..."
Abstract

Cited by 11 (0 self)
 Add to MetaCart
Abstract: We study the computational complexity of the physical problem of finding vacua of string theory which agree with data, such as the cosmological constant, and show that such problems are typically NP hard. In particular, we prove that in the BoussoPolchinski model, the problem is NP complete. We discuss the issues this raises and the possibility that, even if we were to find compelling evidence that some vacuum of string theory describes our universe, we might never be able to find that vacuum explicitly. In a companion paper, we apply this point of view to the question of how early cosmology might select a vacuum. Contents
From Heisenberg to Gödel via Chaitin
 INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
, 2004
"... In 1927 Heisenberg discovered that the "more precisely the position is determined, the less precisely the momentum is known in this instant, and vice versa". Four years later ..."
Abstract

Cited by 11 (9 self)
 Add to MetaCart
In 1927 Heisenberg discovered that the "more precisely the position is determined, the less precisely the momentum is known in this instant, and vice versa". Four years later
The Broad Conception Of Computation
 American Behavioral Scientist
, 1997
"... A myth has arisen concerning Turing's paper of 1936, namely that Turing set forth a fundamental principle concerning the limits of what can be computed by machine  a myth that has passed into cognitive science and the philosophy of mind, to wide and pernicious effect. This supposed principle, somet ..."
Abstract

Cited by 11 (2 self)
 Add to MetaCart
A myth has arisen concerning Turing's paper of 1936, namely that Turing set forth a fundamental principle concerning the limits of what can be computed by machine  a myth that has passed into cognitive science and the philosophy of mind, to wide and pernicious effect. This supposed principle, sometimes incorrectly termed the 'ChurchTuring thesis', is the claim that the class of functions that can be computed by machines is identical to the class of functions that can be computed by Turing machines. In point of fact Turing himself nowhere endorses, nor even states, this claim (nor does Church). I describe a number of notional machines, both analogue and digital, that can compute more than a universal Turing machine. These machines are exemplars of the class of nonclassical computing machines. Nothing known at present rules out the possibility that machines in this class will one day be built, nor that the brain itself is such a machine. These theoretical considerations undercut a numb...
Computational Models of Measurement and Hempels Axiomatization
 CAUSALITY, MEANINGFUL COMPLEXITY AND KNOWLEDGE CONSTRUCTION, VOL. 46 OF THEORY AND DECISION LIBRARY A
, 2009
"... We have developed a mathematical theory about using physical experiments as oracles to Turing machines. We suppose that an experiment makes measurements according to a physical theory and that the queries to the oracle allow the Turing machine to read the value being measured bit by bit. Using this ..."
Abstract

Cited by 4 (4 self)
 Add to MetaCart
We have developed a mathematical theory about using physical experiments as oracles to Turing machines. We suppose that an experiment makes measurements according to a physical theory and that the queries to the oracle allow the Turing machine to read the value being measured bit by bit. Using this theory of physical oracles, an experimenter performing an experiment can be modelled as a Turing machine governing an oracle that is the experiment. We consider this computational model of physical measurement in terms of the theory of measurement of Hempel and Carnap (see [16, 13]). We note that once a physical quantity is given a real value, Hempel’s axioms of measurement involve undecidabilities. To solve this problem, we introduce time into Hempel’s axiomatization. Focussing on a dynamical experiment for measuring mass, as in [1, 3, 5, 4, 6], we show that the computational model of measurement satisfies our generalization of Hempel’s axioms. Our analysis also explains undecidability in measurement and that quantities are not always measurable.
Emergence as a ComputabilityTheoretic Phenomenon
, 2008
"... In dealing with emergent phenomena, a common task is to identify useful descriptions of them in terms of the underlying atomic processes, and to extract enough computational content from these descriptions to enable predictions to be made. Generally, the underlying atomic processes are quite well un ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
In dealing with emergent phenomena, a common task is to identify useful descriptions of them in terms of the underlying atomic processes, and to extract enough computational content from these descriptions to enable predictions to be made. Generally, the underlying atomic processes are quite well understood, and (with important exceptions) captured by mathematics from which it is relatively easy to extract algorithmic content. A widespread view is that the difficulty in describing transitions from algorithmic activity to the emergence associated with chaotic situations is a simple case of complexity outstripping computational resources and human ingenuity. Or, on the other hand, that phenomena transcending the standard Turing model of computation, if they exist, must necessarily lie outside the domain of classical computability theory. In this talk we suggest that much of the current confusion arises from conceptual gaps and the lack of a suitably fundamental model within which to situate emergence. We examine the potential for placing emergent relations in a familiar context based on Turing’s 1939 model for interactive computation over structures described in terms of reals. The explanatory power of this model is explored, formalising informal descriptions in terms of mathematical definability and invariance, and relating a range of basic scientific puzzles to results and intractable problems in computability theory. In this talk
Physical Oracles: The Turing Machine and the Wheatstone Bridge
"... Earlier, we have studied computations possible by physical systems and by algorithms combined with physical systems. In particular, we have analysed the idea of using an experiment as an oracle to an abstract computational device, such as the Turing machine. The theory of composite machines of this ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
Earlier, we have studied computations possible by physical systems and by algorithms combined with physical systems. In particular, we have analysed the idea of using an experiment as an oracle to an abstract computational device, such as the Turing machine. The theory of composite machines of this kind can be used to understand (a) a Turing machine receiving extra computational power from a physical process, or (b) an experimenter modelled as a Turing machine performing a test of a known physical theory T. Our earlier work was based upon experiments in Newtonian mechanics. Here we extend the scope of the theory of experimental oracles beyond Newtonian mechanics to electrical theory. First, we specify an experiment that measures resistance using a Wheatstone bridge and start to classify the computational power of this experimental oracle using nonuniform complexity classes. Secondly, we show that modelling an experimenter and experimental procedure algorithmically imposes a limit on our ability to measure resistance by the Wheatstone bridge. The connection between the algorithm and physical test is mediated by a protocol controlling each query, especially the physical time taken by the experimenter. In our studies we find that physical experiments have an exponential time protocol; this we formulate as a general conjecture. Our theory proposes that measurability in Physics is subject to laws which are colateral effects of the limits of computability and computational complexity.