Results 1  10
of
47
NonTuring computations via MalamentHogarth spacetimes
 Int. J. Theoretical Phys
, 2002
"... We investigate the Church–Kalmár–Kreisel–Turing Theses concerning theoretical (necessary) limitations of future computers and of deductive sciences, in view of recent results of classical general relativity theory. We argue that (i) there are several distinguished Church–Turingtype Theses (not only ..."
Abstract

Cited by 66 (8 self)
 Add to MetaCart
We investigate the Church–Kalmár–Kreisel–Turing Theses concerning theoretical (necessary) limitations of future computers and of deductive sciences, in view of recent results of classical general relativity theory. We argue that (i) there are several distinguished Church–Turingtype Theses (not only one) and (ii) validity of some of these theses depend on the background physical theory we choose to use. In particular, if we choose classical general relativity theory as our background theory, then the above mentioned limitations (predicted by these Theses) become no more necessary, hence certain forms of the Church– Turing Thesis cease to be valid (in general relativity). (For other choices of the background theory the answer might be different.) We also look at various “obstacles ” to computing a nonrecursive function (by relying on relativistic phenomena) published in the literature and show that they can be avoided (by improving the “design ” of our future computer). We also ask ourselves, how all this reflects on the arithmetical hierarchy and the analytical hierarchy of uncomputable functions.
Computability and recursion
 BULL. SYMBOLIC LOGIC
, 1996
"... We consider the informal concept of “computability” or “effective calculability” and two of the formalisms commonly used to define it, “(Turing) computability” and “(general) recursiveness.” We consider their origin, exact technical definition, concepts, history, general English meanings, how they b ..."
Abstract

Cited by 33 (0 self)
 Add to MetaCart
We consider the informal concept of “computability” or “effective calculability” and two of the formalisms commonly used to define it, “(Turing) computability” and “(general) recursiveness.” We consider their origin, exact technical definition, concepts, history, general English meanings, how they became fixed in their present roles, how they were first and are now used, their impact on nonspecialists, how their use will affect the future content of the subject of computability theory, and its connection to other related areas. After a careful historical and conceptual analysis of computability and recursion we make several recommendations in section §7 about preserving the intensional differences between the concepts of “computability” and “recursion.” Specifically we recommend that: the term “recursive ” should no longer carry the additional meaning of “computable” or “decidable;” functions defined using Turing machines, register machines, or their variants should be called “computable” rather than “recursive;” we should distinguish the intensional difference between Church’s Thesis and Turing’s Thesis, and use the latter particularly in dealing with mechanistic questions; the name of the subject should be “Computability Theory” or simply Computability rather than
Hypercomputation and the Physical ChurchTuring Thesis
, 2003
"... A version of the ChurchTuring Thesis states that every e#ectively realizable physical system can be defined by Turing Machines (`Thesis P'); in this formulation the Thesis appears an empirical, more than a logicomathematical, proposition. We review the main approaches to computation beyond Turing ..."
Abstract

Cited by 20 (0 self)
 Add to MetaCart
A version of the ChurchTuring Thesis states that every e#ectively realizable physical system can be defined by Turing Machines (`Thesis P'); in this formulation the Thesis appears an empirical, more than a logicomathematical, proposition. We review the main approaches to computation beyond Turing definability (`hypercomputation'): supertask, nonwellfounded, analog, quantum, and retrocausal computation. These models depend on infinite computation, explicitly or implicitly, and appear physically implausible; moreover, even if infinite computation were realizable, the Halting Problem would not be a#ected. Therefore, Thesis P is not essentially di#erent from the standard ChurchTuring Thesis.
Algorithms: A quest for absolute definitions
 Bulletin of the European Association for Theoretical Computer Science
, 2003
"... y Abstract What is an algorithm? The interest in this foundational problem is not only theoretical; applications include specification, validation and verification of software and hardware systems. We describe the quest to understand and define the notion of algorithm. We start with the ChurchTurin ..."
Abstract

Cited by 19 (9 self)
 Add to MetaCart
y Abstract What is an algorithm? The interest in this foundational problem is not only theoretical; applications include specification, validation and verification of software and hardware systems. We describe the quest to understand and define the notion of algorithm. We start with the ChurchTuring thesis and contrast Church's and Turing's approaches, and we finish with some recent investigations.
When Physical Systems Realize Functions...
 MINDS AND MACHINES
, 1999
"... After briefly discussing the relevance of the notions "computation" and "implementation" for cognitive science, I summarize some of the problems that have been found in their most common interpretations. In particular, I argue that standard notions of computation together with a "statetostate c ..."
Abstract

Cited by 17 (5 self)
 Add to MetaCart
After briefly discussing the relevance of the notions "computation" and "implementation" for cognitive science, I summarize some of the problems that have been found in their most common interpretations. In particular, I argue that standard notions of computation together with a "statetostate correspondence view of implementation" cannot overcome difficulties posed by Putnam's Realization Theorem and that, therefore, a different approach to implementation is required. The notion "realization of a function", developed out of physical theories, is then introduced as a replacement for the notional pair "computationimplementation". After gradual refinement, taking practical constraints into account, this notion gives rise to the notion "digital system" which singles out physical systems that could be actually used, and possibly even built.
Computation and Hypercomputation
 MINDS AND MACHINES
, 2003
"... Does Nature permit the implementation of behaviours that cannot be simulated computationally? We consider the meaning of physical computationality in some detail, and present arguments in favour of physical hypercomputation: for example, modern scientific method does not allow the specification o ..."
Abstract

Cited by 15 (4 self)
 Add to MetaCart
Does Nature permit the implementation of behaviours that cannot be simulated computationally? We consider the meaning of physical computationality in some detail, and present arguments in favour of physical hypercomputation: for example, modern scientific method does not allow the specification of any experiment capable of refuting hypercomputation. We consider the implications of relativistic algorithms capable of solving the (Turing) Halting Problem. We also reject as a fallacy the argument that hypercomputation has no relevance because noncomputable values are indistinguishable from sufficiently close computable approximations. In addition to
Computations via experiments with kinematic systems
, 2004
"... Consider the idea of computing functions using experiments with kinematic systems. We prove that for any set A of natural numbers there exists a 2dimensional kinematic system BA with a single particle P whose observable behaviour decides n ∈ A for all n ∈ N. The system is a bagatelle and can be des ..."
Abstract

Cited by 14 (4 self)
 Add to MetaCart
Consider the idea of computing functions using experiments with kinematic systems. We prove that for any set A of natural numbers there exists a 2dimensional kinematic system BA with a single particle P whose observable behaviour decides n ∈ A for all n ∈ N. The system is a bagatelle and can be designed to operate under (a) Newtonian mechanics or (b) Relativistic mechanics. The theorem proves that valid models of mechanical systems can compute all possible functions on discrete data. The proofs show how any information (coded by some A) can be embedded in the structure of a simple kinematic system and retrieved by simple observations of its behaviour. We reflect on this undesirable situation and argue that mechanics must be extended to include a formal theory for performing experiments, which includes the construction of systems. We conjecture that in such an extended mechanics the functions computed by experiments are precisely those computed by algorithms. We set these theorems and ideas in the context of the literature on the general problem “Is physical behaviour computable? ” and state some open problems.
The ChurchTuring Thesis over Arbitrary Domains
, 2008
"... The ChurchTuring Thesis has been the subject of many variations and interpretations over the years. Specifically, there are versions that refer only to functions over the natural numbers (as Church and Kleene did), while others refer to functions over arbitrary domains (as Turing intended). Our pu ..."
Abstract

Cited by 12 (9 self)
 Add to MetaCart
The ChurchTuring Thesis has been the subject of many variations and interpretations over the years. Specifically, there are versions that refer only to functions over the natural numbers (as Church and Kleene did), while others refer to functions over arbitrary domains (as Turing intended). Our purpose is to formalize and analyze the thesis when referring to functions over arbitrary domains. First, we must handle the issue of domain representation. We show that, prima facie, the thesis is not well defined for arbitrary domains, since the choice of representation of the domain might have a nontrivial influence. We overcome this problem in two steps: (1) phrasing the thesis for entire computational models, rather than for a single function; and (2) proving a “completeness” property of the recursive functions and Turing machines with respect to domain representations. In the second part, we propose an axiomatization of an “effective model of computation” over an arbitrary countable domain. This axiomatization is based on Gurevich’s postulates for sequential algorithms. A proof is provided showing that all models satisfying these axioms, regardless of underlying data structure, are of equivalent computational power to, or weaker than, Turing machines.
The Broad Conception Of Computation
 American Behavioral Scientist
, 1997
"... A myth has arisen concerning Turing's paper of 1936, namely that Turing set forth a fundamental principle concerning the limits of what can be computed by machine  a myth that has passed into cognitive science and the philosophy of mind, to wide and pernicious effect. This supposed principle, somet ..."
Abstract

Cited by 11 (2 self)
 Add to MetaCart
A myth has arisen concerning Turing's paper of 1936, namely that Turing set forth a fundamental principle concerning the limits of what can be computed by machine  a myth that has passed into cognitive science and the philosophy of mind, to wide and pernicious effect. This supposed principle, sometimes incorrectly termed the 'ChurchTuring thesis', is the claim that the class of functions that can be computed by machines is identical to the class of functions that can be computed by Turing machines. In point of fact Turing himself nowhere endorses, nor even states, this claim (nor does Church). I describe a number of notional machines, both analogue and digital, that can compute more than a universal Turing machine. These machines are exemplars of the class of nonclassical computing machines. Nothing known at present rules out the possibility that machines in this class will one day be built, nor that the brain itself is such a machine. These theoretical considerations undercut a numb...
Set Theory and Physics
 FOUNDATIONS OF PHYSICS, VOL. 25, NO. 11
, 1995
"... Inasmuch as physical theories are formalizable, set theory provides a framework for theoretical physics. Four speculations about the relevance of set theoretical modeling for physics are presented: the role of transcendental set theory (i) hr chaos theory, (ii) for paradoxical decompositions of soli ..."
Abstract

Cited by 8 (7 self)
 Add to MetaCart
Inasmuch as physical theories are formalizable, set theory provides a framework for theoretical physics. Four speculations about the relevance of set theoretical modeling for physics are presented: the role of transcendental set theory (i) hr chaos theory, (ii) for paradoxical decompositions of solid threedimensional objects, (iii) in the theory of effective computability (ChurchTurhrg thesis) related to the possible "solution of supertasks," and (iv) for weak solutions. Several approaches to set theory and their advantages and disadvatages for" physical applications are discussed: Cantorian "naive" (i.e., nonaxiomatic) set theory, contructivism, and operationalism, hr the arrthor's ophrion, an attitude of "suspended attention" (a term borrowed from psychoanalysis) seems most promising for progress. Physical and set theoretical entities must be operationalized wherever possible. At the same thne, physicists shouM be open to "bizarre" or "mindboggling" new formalisms, which treed not be operationalizable or testable at the thne of their " creation, but which may successfully lead to novel fields of phenomenology and technology.