Results 1  10
of
36
A lambdacalculus à la de Bruijn with explicit substitutions
, 1995
"... The aim of this paper is to present the scalculus which is a very simple calculus with explicit substitutions and to prove its confluence on closed terms and the preservation of strong normalisation of terms. We shall prove strong normalisation of the corresponding calculus of substitution by tra ..."
Abstract

Cited by 78 (26 self)
 Add to MetaCart
The aim of this paper is to present the scalculus which is a very simple calculus with explicit substitutions and to prove its confluence on closed terms and the preservation of strong normalisation of terms. We shall prove strong normalisation of the corresponding calculus of substitution by translating it into the oecalculus [ACCL91], and therefore the relation between both calculi will be made explicit. The confluence of the scalculus is obtained by the "interpretation method" ([Har89], [CHL92]). The proof of the preservation of normalisation follows the lines of an analogous result for the AEcalculus (cf. [BBLRD95]). The relation between s and AE is also studied.
Preservation of Strong Normalisation in Named Lambda Calculi with Explicit Substitution and Garbage Collection
 IN CSN95: COMPUTER SCIENCE IN THE NETHERLANDS
, 1995
"... In this paper we introduce and study a new lambdacalculus with explicit substitution, lambdaxgc, which has two distinguishing features: first, it retains the use of traditional variable names, specifying terms modulo renaming; this simplifies the reduction system. Second, it includes reduction rul ..."
Abstract

Cited by 65 (7 self)
 Add to MetaCart
In this paper we introduce and study a new lambdacalculus with explicit substitution, lambdaxgc, which has two distinguishing features: first, it retains the use of traditional variable names, specifying terms modulo renaming; this simplifies the reduction system. Second, it includes reduction rules for explicit garbage collection; this simplifies several proofs. We show that lambdaxgc is a conservative extension which preserves strong normalisation (PSN) of the untyped lambdacalculus. The result is obtained in a modular way by first proving it for garbagefree reduction and then extending to `reductions in garbage'. This provides insight into the counterexample to PSN for lambdasigma of Melliès (1995); we exploit the abstract nature of lambdaxgc to show how PSN is in conflict with any reasonable substitution composition rule (except for trivial composition rules of which we mention one). Key words: lambda calculus, explicit substitution, strong normalisation, garbage collection.
The Barendregt Cube with Definitions and Generalised Reduction
, 1997
"... In this paper, we propose to extend the Barendregt Cube by generalising reduction and by adding definition mechanisms. We show that this extension satisfies all the original properties of the Cube including Church Rosser, Subject Reduction and Strong Normalisation. Keywords: Generalised Reduction, ..."
Abstract

Cited by 37 (17 self)
 Add to MetaCart
In this paper, we propose to extend the Barendregt Cube by generalising reduction and by adding definition mechanisms. We show that this extension satisfies all the original properties of the Cube including Church Rosser, Subject Reduction and Strong Normalisation. Keywords: Generalised Reduction, Definitions, Barendregt Cube, Church Rosser, Subject Reduction, Strong Normalisation. Contents 1 Introduction 3 1.1 Why generalised reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Why definition mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 The item notation for definitions and generalised reduction . . . . . . . . . . 4 2 The item notation 7 3 The ordinary typing relation and its properties 10 3.1 The typing relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Properties of the ordinary typing relation . . . . . . . . . . . . . . . . . . . . 13 4 Generalising reduction in the Cube 15 4.1 The generalised...
Explicit Substitution: on the Edge of Strong Normalization
 Theoretical Computer Science
, 1997
"... We use the Recursive Path Ordering (RPO) technique of semantic labelling to show the Preservation of Strong Normalization (PSN) property for several calculi of explicit substitution. Preservation of Strong Normalization states that if a term M is strongly normalizing under ordinary fireduction (us ..."
Abstract

Cited by 30 (2 self)
 Add to MetaCart
We use the Recursive Path Ordering (RPO) technique of semantic labelling to show the Preservation of Strong Normalization (PSN) property for several calculi of explicit substitution. Preservation of Strong Normalization states that if a term M is strongly normalizing under ordinary fireduction (using `global' substitutions), then it is strongly normalizing if the substitution is made explicit (`local'). There are different ways of making global substitution explicit and PSN is a quite natural and desirable property for the explicit substitution calculus. Our method for proving PSN is very general and applies to several known systems of explicit substitutions, both with named variables and with De Bruijn indices: AE of Lescanne et al., s of Kamareddine and R'ios and x of Rose and Bloo. We also look at two small extensions of the explicit substitution calculus that allow to permute substitutions. For one of these extensions PSN fails (using the counterexample in [Melli`es 95]). For the...
Intersection types for explicit substitutions
, 2003
"... We present a new system of intersection types for a compositionfree calculus of explicit substitutions with a rule for garbage collection, and show that it characterizes those terms which are strongly normalizing. This system extends previous work on the natural generalization of the classical inte ..."
Abstract

Cited by 17 (6 self)
 Add to MetaCart
We present a new system of intersection types for a compositionfree calculus of explicit substitutions with a rule for garbage collection, and show that it characterizes those terms which are strongly normalizing. This system extends previous work on the natural generalization of the classical intersection types system, which characterized head normalization and weak normalization, but was not complete for strong normalization. An important role is played by the notion of available variable in a term, which is a generalization of the classical notion of free variable.
Combinatory Reduction Systems with Explicit Substitution
 REWRITING TECHNIQUES AND APPLICATIONS (RTA), LECTURE NOTES IN COMPUTER SCIENCE
, 1996
"... We generalise the notion of explicit substitution from the lambdacalculus to higher order rewriting, realised by combinatory reduction systems (CRS). In this general framework this is achieved by identifying the "explicit" subclass of CRSs within which rewriting can be implemented efficiently.
Fo ..."
Abstract

Cited by 16 (2 self)
 Add to MetaCart
We generalise the notion of explicit substitution from the lambdacalculus to higher order rewriting, realised by combinatory reduction systems (CRS). In this general framework this is achieved by identifying the "explicit" subclass of CRSs within which rewriting can be implemented efficiently.
For every CRS R we show how to construct an explicit substitution variant, Rx, which is a conservative extension of R (and hence confluent when R is confluent). Furthermore we give a syntactic criterion on the rewrite rules that identifies a large subset of the CRSs, the redexpreserving CRSs, for which we show that Rx preserves strong normalisation of R.
We believe that this is a significant first step towards providing a methodology for reasoning about the operational properties of higherorder rewriting in general, and higherorder program transformations in particular, since confluence ensures correctness of such transformations and preservation of strong normalisation ensures that the transformations are always safe, in both cases independently of the used reduction strategy.
Preservation of Strong Normalisation for Explicit Substitution
, 1995
"... this paper is different and has been invented independently of the proofs in [Kamareddine & Rios 95] and [BBLR 95]. We show by means of a counterexample that an extension of exp with certain interaction between substitutions does not preserve strong normalisation. In appendix A we use a more common ..."
Abstract

Cited by 15 (2 self)
 Add to MetaCart
this paper is different and has been invented independently of the proofs in [Kamareddine & Rios 95] and [BBLR 95]. We show by means of a counterexample that an extension of exp with certain interaction between substitutions does not preserve strong normalisation. In appendix A we use a more common notation trying to determine the borderline between preservation of strong normalisation and interaction of substitutions. 2 The calculus
A unified approach to Type Theory through a refined λcalculus
, 1994
"... In the area of foundations of mathematics and computer science, three related topics dominate. These are calculus, type theory and logic. ..."
Abstract

Cited by 14 (13 self)
 Add to MetaCart
In the area of foundations of mathematics and computer science, three related topics dominate. These are calculus, type theory and logic.
Calculi of Generalised βReduction and Explicit Substitutions: The TypeFree and Simply Typed Versions
, 1998
"... Extending the λcalculus with either explicit substitution or generalized reduction has been the subject of extensive research recently, and still has many open problems. This paper is the first investigation into the properties of a calculus combining both generalized reduction and explicit substit ..."
Abstract

Cited by 14 (7 self)
 Add to MetaCart
Extending the λcalculus with either explicit substitution or generalized reduction has been the subject of extensive research recently, and still has many open problems. This paper is the first investigation into the properties of a calculus combining both generalized reduction and explicit substitutions. We present a calculus, gs, that combines a calculus of explicit substitution, s, and a calculus with generalized reduction, g. We believe that gs is a useful extension of the  calculus, because it allows postponement of work in two different but complementary ways. Moreover, gs (and also s) satisfies properties desirable for calculi of explicit substitutions and generalized reductions. In particular, we show that gs preserves strong normalization, is a conservative extension of g, and simulates fireduction of g and the classical calculus. Furthermore, we study the simply typed versions of s and gs, and show that welltyped terms are strongly normalizing and that other properties,...