Results 1  10
of
136
Fast Fourier transforms for nonequispaced data: A tutorial
, 2000
"... In this section, we consider approximative methods for the fast computation of multivariate discrete Fourier transforms for nonequispaced data (NDFT) in the time domain and in the frequency domain. In particular, we are interested in the approximation error as function of the arithmetic complexity o ..."
Abstract

Cited by 141 (31 self)
 Add to MetaCart
In this section, we consider approximative methods for the fast computation of multivariate discrete Fourier transforms for nonequispaced data (NDFT) in the time domain and in the frequency domain. In particular, we are interested in the approximation error as function of the arithmetic complexity of the algorithm. We discuss the robustness of NDFTalgorithms with respect to roundoff errors and apply NDFTalgorithms for the fast computation of Bessel transforms.
Compressed Sensing MRI
"... Compressed sensing (CS) aims to reconstruct signals and images from significantly fewer measurements than were traditionally thought necessary. Magnetic Resonance Imaging (MRI) is an essential medical imaging tool with an inherently slow data acquisition process. Applying CS to MRI offers potentiall ..."
Abstract

Cited by 134 (3 self)
 Add to MetaCart
Compressed sensing (CS) aims to reconstruct signals and images from significantly fewer measurements than were traditionally thought necessary. Magnetic Resonance Imaging (MRI) is an essential medical imaging tool with an inherently slow data acquisition process. Applying CS to MRI offers potentially significant scan time reductions, with benefits for patients and health
Fourier slice photography
 in Proceedings of the International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’05
, 2005
"... Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of ..."
Abstract

Cited by 131 (4 self)
 Add to MetaCart
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions
Nonuniform Fast Fourier Transforms Using MinMax Interpolation
 IEEE Trans. Signal Process
, 2003
"... The FFT is used widely in signal processing for efficient computation of the Fourier transform (FT) of finitelength signals over a set of uniformlyspaced frequency locations. However, in many applications, one requires nonuniform sampling in the frequency domain, i.e.,a nonuniform FT . Several pap ..."
Abstract

Cited by 121 (22 self)
 Add to MetaCart
The FFT is used widely in signal processing for efficient computation of the Fourier transform (FT) of finitelength signals over a set of uniformlyspaced frequency locations. However, in many applications, one requires nonuniform sampling in the frequency domain, i.e.,a nonuniform FT . Several papers have described fast approximations for the nonuniform FT based on interpolating an oversampled FFT. This paper presents an interpolation method for the nonuniform FT that is optimal in the minmax sense of minimizing the worstcase approximation error over all signals of unit norm. The proposed method easily generalizes to multidimensional signals. Numerical results show that the minmax approach provides substantially lower approximation errors than conventional interpolation methods. The minmax criterion is also useful for optimizing the parameters of interpolation kernels such as the KaiserBessel function.
Accelerating the nonuniform Fast Fourier Transform
 SIAM REVIEW
, 2004
"... The nonequispaced Fourier transform arises in a variety of application areas, from medical imaging to radio astronomy to the numerical solution of partial differential equations. In a typical problem, one is given an irregular sampling of N data in the frequency domain and one is interested in recon ..."
Abstract

Cited by 70 (4 self)
 Add to MetaCart
(Show Context)
The nonequispaced Fourier transform arises in a variety of application areas, from medical imaging to radio astronomy to the numerical solution of partial differential equations. In a typical problem, one is given an irregular sampling of N data in the frequency domain and one is interested in reconstructing the corresponding function in the physical domain. When the sampling is uniform, the fast Fourier transform (FFT) allows this calculation to be computed in O(N log N) operations rather than O(N 2) operations. Unfortunately, when the sampling is nonuniform, the FFT does not apply. Over the last few years, a number of algorithms have been developed to overcome this limitation and are often referred to as nonuniform FFTs (NUFFTs). These rely on a mixture of interpolation and the judicious use of the FFT on an oversampled grid [A. Dutt and V. Rokhlin, SIAM J. Sci. Comput., 14 (1993), pp. 1368–1383]. In this paper, we observe that one of the standard interpolation or “gridding ” schemes, based on Gaussians, can be accelerated by a significant factor without precomputation and storage of the interpolation weights. This is of particular value in two and threedimensional settings, saving either 10dN in storage in d dimensions or a factor of about 5–10 in CPUtime (independent of dimension).
On the optimality of the gridding reconstruction algorithm
 IEEE Trans.Med.Imag.,vol.19,no.4,pp.306–317,2000
"... Abstract—Gridding reconstruction is a method to reconstruct data onto a Cartesian grid from a set of nonuniformly sampled measurements. This method is appreciated for being robust and computationally fast. However, it lacks solid analysis and design tools to quantify or minimize the reconstruction e ..."
Abstract

Cited by 35 (0 self)
 Add to MetaCart
(Show Context)
Abstract—Gridding reconstruction is a method to reconstruct data onto a Cartesian grid from a set of nonuniformly sampled measurements. This method is appreciated for being robust and computationally fast. However, it lacks solid analysis and design tools to quantify or minimize the reconstruction error. Least squares reconstruction (LSR), on the other hand, is another method which is optimal in the sense that it minimizes the reconstruction error. This method is computationally intensive and, in many cases, sensitive to measurement noise. Hence, it is rarely used in practice. Despite their seemingly different approaches, the gridding and LSR methods are shown to be closely related. The similarity between these two methods is accentuated when they are properly expressed in a common matrix form. It is shown that the gridding algorithm can be considered an approximation to the least squares method. The optimal gridding parameters are defined as the ones which yield the minimum approximation error. These parameters are calculated by minimizing the norm of an approximation error matrix. This problem is studied and solved in the general form of approximation using linearly structured matrices. This method not only supports more general forms of the gridding algorithm, it can also be used to accelerate the reconstruction techniques from incomplete data. The application of this method to a case of twodimensional (2D) spiral magnetic resonance imaging shows a reduction of more than 4 dB in the average reconstruction error. Index Terms—Gridding reconstruction, image reconstruction, matrix approximation, nonuniform sampling. I.
The Statistical Analysis of fMRI Data
, 2008
"... In recent years there has been explosive growth in the number of neuroimaging studies performed using functional Magnetic Resonance Imaging (fMRI). The field that has grown around the acquisition and analysis of fMRI data is intrinsically interdisciplinary in nature and involves contributions from ..."
Abstract

Cited by 34 (0 self)
 Add to MetaCart
In recent years there has been explosive growth in the number of neuroimaging studies performed using functional Magnetic Resonance Imaging (fMRI). The field that has grown around the acquisition and analysis of fMRI data is intrinsically interdisciplinary in nature and involves contributions from researchers in neuroscience, psychology, physics and statistics, among others. A standard fMRI study gives rise to massive amounts of noisy data with a complicated spatiotemporal correlation structure. Statistics plays a crucial role in understanding the nature of the data and obtaining relevant results that can be used and interpreted by neuroscientists. In this paper we discuss the analysis of fMRI data, from the initial acquisition of the raw data to its use in locating brain activity, making inference about brain connectivity and predictions about psychological or disease states. Along the way, we illustrate interesting and important issues where statistics already plays a crucial role. We also seek to illustrate areas where statistics has perhaps been underutilized and will have an increased role in the future.
Iterative tomographic image reconstruction using Fourierbased forward and back projectors
 IEEE Trans. Med. Imag
, 2004
"... Fourierbased reprojection methods have the potential to reduce the computation time in iterative tomographic image reconstruction. Interpolation errors are a limitation of Fourierbased reprojection methods. We apply a minmax interpolation method for the nonuniform fast Fourier transform (NUFFT) t ..."
Abstract

Cited by 26 (5 self)
 Add to MetaCart
(Show Context)
Fourierbased reprojection methods have the potential to reduce the computation time in iterative tomographic image reconstruction. Interpolation errors are a limitation of Fourierbased reprojection methods. We apply a minmax interpolation method for the nonuniform fast Fourier transform (NUFFT) to minimize the interpolation errors. Numerical results show that the minmax NUFFT approach provides substantially lower approximation errors in tomographic reprojection and backprojection than conventional interpolation methods.
Resampling of data between arbitrary grids using convolution interpolation
 IEEE Trans. Med. Imag
, 1999
"... Abstract—For certain medical applications resampling of data is required. In magnetic resonance tomography (MRT) or computer tomography (CT), e.g., data may be sampled on nonrectilinear grids in the Fourier domain. For the image reconstruction a convolutioninterpolation algorithm, often called grid ..."
Abstract

Cited by 25 (0 self)
 Add to MetaCart
(Show Context)
Abstract—For certain medical applications resampling of data is required. In magnetic resonance tomography (MRT) or computer tomography (CT), e.g., data may be sampled on nonrectilinear grids in the Fourier domain. For the image reconstruction a convolutioninterpolation algorithm, often called gridding, can be applied for resampling of the data onto a rectilinear grid. Resampling of data from a rectilinear onto a nonrectilinear grid are needed, e.g., if projections of a given rectilinear data set are to be obtained. In this paper we introduce the application of the convolution interpolation for resampling of data from one arbitrary grid onto another. The basic algorithm can be split into two steps. First, the data are resampled from the arbitrary input grid onto a rectilinear grid and second, the rectilinear data is resampled onto the arbitrary output grid. Furthermore, we like to introduce a new technique to derive the sampling density function needed for the first step of our algorithm. For fast, samplingpatternindependent determination of the sampling density function the Voronoi diagram of the sample distribution is calculated. The volume of the Voronoi cell around each sample is used as a measure for the sampling density. It is shown that the introduced resampling technique allows fast resampling of data between arbitrary grids. Furthermore, it is shown that the suggested approach to derive the sampling density function is suitable even for arbitrary sampling patterns. Examples are given in which the proposed technique has been applied for the reconstruction of data acquired along spiral, radial, and arbitrary trajectories and for the fast calculation of projections of a given rectilinearly sampled image. Index Terms—Arbitrary grids, convolution interpolation, density function, Voronoi diagram. I.