Results 1 
4 of
4
Nonuniform Fast Fourier Transforms Using MinMax Interpolation
 IEEE Trans. Signal Process
, 2003
"... The FFT is used widely in signal processing for efficient computation of the Fourier transform (FT) of finitelength signals over a set of uniformlyspaced frequency locations. However, in many applications, one requires nonuniform sampling in the frequency domain, i.e.,a nonuniform FT . Several pap ..."
Abstract

Cited by 83 (13 self)
 Add to MetaCart
The FFT is used widely in signal processing for efficient computation of the Fourier transform (FT) of finitelength signals over a set of uniformlyspaced frequency locations. However, in many applications, one requires nonuniform sampling in the frequency domain, i.e.,a nonuniform FT . Several papers have described fast approximations for the nonuniform FT based on interpolating an oversampled FFT. This paper presents an interpolation method for the nonuniform FT that is optimal in the minmax sense of minimizing the worstcase approximation error over all signals of unit norm. The proposed method easily generalizes to multidimensional signals. Numerical results show that the minmax approach provides substantially lower approximation errors than conventional interpolation methods. The minmax criterion is also useful for optimizing the parameters of interpolation kernels such as the KaiserBessel function.
Analysis And Design Of MinimaxOptimal Interpolators
 IEEE Trans. Signal Proc
, 1998
"... We consider a class of interpolation algorithms, including the leastsquares optimal Yen interpolator, and we derive a closedform expression for the interpolation error for interpolators of this type. The error depends on the eigenvalue distribution of a matrix which is specified for each set of sa ..."
Abstract

Cited by 13 (3 self)
 Add to MetaCart
We consider a class of interpolation algorithms, including the leastsquares optimal Yen interpolator, and we derive a closedform expression for the interpolation error for interpolators of this type. The error depends on the eigenvalue distribution of a matrix which is specified for each set of sampling points. The error expression can be used to prove that the Yen interpolator is optimal. The implementation of the Yen algorithm suffers from numerical illconditioning, forcing the use of a regularized, approximate solution. We suggest a new, approximate solution, consisting of a sinckernel interpolator with specially chosen weighting coefficients. The newly designed sinckernel interpolator is compared with the usual sinc interpolator using Jacobian (area) weighting, through numerical simulations. We show that the sinc interpolator with Jacobian weighting works well only when the sampling is nearly uniform. The newly designed sinckernel interpolator is shown to perform better than ...
DirectFourier Reconstruction In Tomography And Synthetic Aperture Radar
 Intl. J. Imaging Sys. and Tech
, 1998
"... We investigate the use of directFourier (DF) image reconstruction in computerized tomography and synthetic aperture radar (SAR). One of our aims is to determine why the convolutionbackprojection (CBP) method is favored over DF methods in tomography, while DF methods are virtually always used in SAR ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
We investigate the use of directFourier (DF) image reconstruction in computerized tomography and synthetic aperture radar (SAR). One of our aims is to determine why the convolutionbackprojection (CBP) method is favored over DF methods in tomography, while DF methods are virtually always used in SAR. We show that the CBP algorithm is equivalent to DF reconstruction using a Jacobianweighted 2D periodic sinckernel interpolator. This interpolation is not optimal in any sense, which suggests that DF algorithms utilizing optimal interpolators may surpass CBP in image quality. We consider use of two types of DF interpolation: a windowed sinc kernel, and the leastsquares optimal Yen interpolator. Simulations show that reconstructions using the Yen interpolator do not possess the expected visual quality, because of regularization needed to preserve numerical stability. Next, we show that with a concentricsquares sampling scheme, DF interpolation can be performed accurately and efficiently...
Signal Processing Issues In Synthetic Aperture Radar And Computer Tomography
, 1998
"... This paper also proposed another reconstruction method based on a direct approximation of the Fourier inversion formula using a twodimensional (2D) trapezoidal rule. In addition, the possibility of reconstruction from a concentricsquares raster was discussed. Numerous simple interpolators have bee ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
This paper also proposed another reconstruction method based on a direct approximation of the Fourier inversion formula using a twodimensional (2D) trapezoidal rule. In addition, the possibility of reconstruction from a concentricsquares raster was discussed. Numerous simple interpolators have been tried in DF reconstruction with the results compared with CBP [33]. In [34] and [35], the concept of angular bandlimiting was used to interpolate the polar data onto a Cartesian grid. In [36], a DF reconstruction using bilinear interpolation for diffraction tomography provided image quality that was comparable to that produced by the CBP algorithm. Very good reconstruction quality was obtained in [37] and [38] using a spline interpolator, or a hybrid type of spline interpolator. The notion of "gridding" was introduced in [39] as a method of obtaining optimal inversion of Fourier data. An optimal gridding function was proposed, and successful results were obtained when applied to the tomographic reconstruction problem. In [40], several different gridding functions were tried for DF reconstruction, and the performances were compared. In [41, 42], the linogram reconstruction method was proposed as a form of DF reconstruction. The data collection grid in the linogram method is the same as in the concentricsquares sampling scheme. The inversion of the Fourier data in [41, 42] was accomplished by first applying the chirpz transform in one direction and then computing FFTs in the other direction. In CT, many of these attempts at DF reconstruction have given a poorer result than the CBP algorithm, due to the error incurred in the process of the polartoCartesian interpolation. The attraction of DF reconstruction, however, is that it is thought to require less computation than ...