Results 1  10
of
124
Finite Sequences and Tuples of Elements of a Nonempty Sets
, 1990
"... this article is the definition of tuples. The element of a set of all sequences of the length n of D is called a tuple of a nonempty set D and it is denoted by element of D ..."
Abstract

Cited by 291 (7 self)
 Add to MetaCart
this article is the definition of tuples. The element of a set of all sequences of the length n of D is called a tuple of a nonempty set D and it is denoted by element of D
Basis of Real Linear Space
, 1990
"... this paper. For simplicity, we follow the rules: x is a set, a, b are real numbers, V is a real linear space, W 1 , W 2 , W 3 are subspaces of V , v, v 1 , v 2 are vectors of V , A, B are subsets of the carrier of V , L, L 1 , L 2 are linear combinations of V , l is a linear combination of A, F , G ..."
Abstract

Cited by 250 (21 self)
 Add to MetaCart
this paper. For simplicity, we follow the rules: x is a set, a, b are real numbers, V is a real linear space, W 1 , W 2 , W 3 are subspaces of V , v, v 1 , v 2 are vectors of V , A, B are subsets of the carrier of V , L, L 1 , L 2 are linear combinations of V , l is a linear combination of A, F , G
The Reflection Theorem
 Journal of Formalized Mathematics
, 1990
"... this paper (and in another Mizar articles) we work in TarskiGrothendieck (TG) theory (see [17]) which ensures the existence of sets that have properties like universal class (i.e. this theory is stronger than MK). The sets are introduced in [15] and some concepts of MK are modeled. The concepts are ..."
Abstract

Cited by 228 (50 self)
 Add to MetaCart
this paper (and in another Mizar articles) we work in TarskiGrothendieck (TG) theory (see [17]) which ensures the existence of sets that have properties like universal class (i.e. this theory is stronger than MK). The sets are introduced in [15] and some concepts of MK are modeled. The concepts are: the class On of all ordinal numbers belonging to the universe, subclasses, transfinite sequences of nonempty elements of universe, etc. The reflection theorem states that if A ¸ is an increasing and continuous transfinite sequence of nonempty sets and class A =
Complete lattices
 Journal of Formalized Mathematics
, 1992
"... Summary. In the first section the lattice of subsets of distinct set is introduced. The join and meet operations are, respectively, union and intersection of sets, and the ordering relation is inclusion. It is shown that this lattice is Boolean, i.e. distributive and complementary. The second sectio ..."
Abstract

Cited by 120 (34 self)
 Add to MetaCart
Summary. In the first section the lattice of subsets of distinct set is introduced. The join and meet operations are, respectively, union and intersection of sets, and the ordering relation is inclusion. It is shown that this lattice is Boolean, i.e. distributive and complementary. The second section introduces the poset generated in a distinct lattice by its ordering relation. Besides, it is proved that posets which have l.u.b.’s and g.l.b.’s for every two elements generate lattices with the same ordering relations. In the last section the concept of complete lattice is introduced and discussed. Finally, the fact that the function f from subsets of distinct set yielding elements of this set is a infinite union of some complete lattice, if f yields an element a for singleton {a} and f ( f ◦X) = f ( ⊔ X) for every subset X, is proved. Some concepts and proofs are based on [8] and [9].
A Borsuk theorem on homotopy types
 Journal of Formalized Mathematics
, 1991
"... Summary. We present a Borsuk’s theorem published first in [1] (compare also [2, pages 119–120]). It is slightly generalized, the assumption of the metrizability is omitted. We introduce concepts needed for the formulation and the proofs of the theorems on upper semicontinuous decompositions, retrac ..."
Abstract

Cited by 99 (7 self)
 Add to MetaCart
Summary. We present a Borsuk’s theorem published first in [1] (compare also [2, pages 119–120]). It is slightly generalized, the assumption of the metrizability is omitted. We introduce concepts needed for the formulation and the proofs of the theorems on upper semicontinuous decompositions, retracts, strong deformation retract. However, only those facts that are necessary in the proof have been proved.
The Euclidean Space
, 1991
"... this paper. In this paper k, n are natural numbers and r is a real number. Let us consider n. The functor R ..."
Abstract

Cited by 82 (0 self)
 Add to MetaCart
this paper. In this paper k, n are natural numbers and r is a real number. Let us consider n. The functor R
Joining of decorated trees
 Journal of Formalized Mathematics
, 1993
"... Summary. This is the continuation of the sequence of articles on trees (see [2], [4], [5]). The main goal is to introduce joining operations on decorated trees corresponding with operations introduced in [5]. We will also introduce the operation of substitution. In the last section we dealt with tre ..."
Abstract

Cited by 55 (17 self)
 Add to MetaCart
Summary. This is the continuation of the sequence of articles on trees (see [2], [4], [5]). The main goal is to introduce joining operations on decorated trees corresponding with operations introduced in [5]. We will also introduce the operation of substitution. In the last section we dealt with trees decorated by Cartesian product, i.e. we showed some lemmas on joining operations applied to such trees.
On the Decomposition of the States of SCM
, 1993
"... This article continues the development of the basic terminology ..."
Abstract

Cited by 52 (1 self)
 Add to MetaCart
This article continues the development of the basic terminology
On Defining Functions on Trees
, 2003
"... this paper. 1. PRELIMINARIES One can prove the following propositions: (1) For every non empty set D holds every finite sequence of elements of FinTrees(D) is a finite sequence of elements of Trees(D) ..."
Abstract

Cited by 50 (22 self)
 Add to MetaCart
this paper. 1. PRELIMINARIES One can prove the following propositions: (1) For every non empty set D holds every finite sequence of elements of FinTrees(D) is a finite sequence of elements of Trees(D)