Results 1  10
of
137
Generators and representability of functors in commutative and noncommutative geometry
 MOSC MATH. J
, 2002
"... We give a sufficient condition for an Extfinite triangulated category to be saturated. Saturatedness means that every contravariant cohomological functor of finite type to vector spaces is representable. The condition consists in existence of a strong generator. We prove that the bounded derived ca ..."
Abstract

Cited by 85 (2 self)
 Add to MetaCart
We give a sufficient condition for an Extfinite triangulated category to be saturated. Saturatedness means that every contravariant cohomological functor of finite type to vector spaces is representable. The condition consists in existence of a strong generator. We prove that the bounded derived categories of coherent sheaves on smooth proper commutative and noncommutative varieties have strong generators, hence saturated. In contrast the similar category for a smooth compact analytic surface with no curves is not saturated.
Stability conditions on triangulated categories
, 212
"... This paper introduces the notion of a stability condition on a triangulated category. The motivation comes from the study of Dirichlet branes in string theory, and especially from M.R. Douglas’s notion of Πstability. From a mathematical point of view, the most interesting feature of the definition ..."
Abstract

Cited by 80 (6 self)
 Add to MetaCart
This paper introduces the notion of a stability condition on a triangulated category. The motivation comes from the study of Dirichlet branes in string theory, and especially from M.R. Douglas’s notion of Πstability. From a mathematical point of view, the most interesting feature of the definition is that the set of stability
DG quotients of DG categories
 J. Algebra
"... Abstract. Keller introduced a notion of quotient of a differential graded category modulo a full differential graded subcategory which agrees with Verdier’s notion of quotient of a triangulated category modulo a triangulated subcategory. This work is an attempt to further develop his theory. ..."
Abstract

Cited by 79 (0 self)
 Add to MetaCart
Abstract. Keller introduced a notion of quotient of a differential graded category modulo a full differential graded subcategory which agrees with Verdier’s notion of quotient of a triangulated category modulo a triangulated subcategory. This work is an attempt to further develop his theory.
Stable model categories are categories of modules
 TOPOLOGY
, 2003
"... A stable model category is a setting for homotopy theory where the suspension functor is invertible. The prototypical examples are the category of spectra in the sense of stable homotopy theory and the category of unbounded chain complexes of modules over a ring. In this paper we develop methods for ..."
Abstract

Cited by 78 (16 self)
 Add to MetaCart
A stable model category is a setting for homotopy theory where the suspension functor is invertible. The prototypical examples are the category of spectra in the sense of stable homotopy theory and the category of unbounded chain complexes of modules over a ring. In this paper we develop methods for deciding when two stable model categories represent ‘the same homotopy theory’. We show that stable model categories with a single compact generator are equivalent to modules over a ring spectrum. More generally stable model categories with a set of generators are characterized as modules over a ‘ring spectrum with several objects’, i.e., as spectrum valued diagram categories. We also prove a Morita theorem which shows how equivalences between module categories over ring spectra can be realized by smashing with a pair of bimodules. Finally, we characterize stable model categories which represent the derived category of a ring. This is a slight generalization of Rickard’s work on derived equivalent rings. We also include a proof of the model category equivalence of modules over the EilenbergMac Lane spectrum HR and (unbounded) chain complexes of Rmodules for a ring R.
On differential graded categories
 INTERNATIONAL CONGRESS OF MATHEMATICIANS. VOL. II
, 2006
"... Differential graded categories enhance our understanding of triangulated categories appearing in algebra and geometry. In this survey, we review their foundations and report on recent work by Drinfeld, DuggerShipley,..., Toën and ToënVaquié. ..."
Abstract

Cited by 63 (3 self)
 Add to MetaCart
Differential graded categories enhance our understanding of triangulated categories appearing in algebra and geometry. In this survey, we review their foundations and report on recent work by Drinfeld, DuggerShipley,..., Toën and ToënVaquié.
Hypergeometric functions and mirror symmetry in toric varieties
, 1999
"... We study aspects related to Kontsevich’s homological mirror symmetry conjecture [42] in the case of Calabi–Yau complete intersections in toric varieties. In a 1996 lecture, Kontsevich [43] indicated how his proposal implies that the groups of automorphisms of the two types of categories involved in ..."
Abstract

Cited by 56 (4 self)
 Add to MetaCart
We study aspects related to Kontsevich’s homological mirror symmetry conjecture [42] in the case of Calabi–Yau complete intersections in toric varieties. In a 1996 lecture, Kontsevich [43] indicated how his proposal implies that the groups of automorphisms of the two types of categories involved in the homological mirror symmetry conjecture should also be identified. Our results provide an explicit geometric construction of the correspondence between the automorphisms of the two types of categories. We compare the monodromy calculations for the Picard–Fuchs system associated with the periods of a Calabi–Yau manifold M with the algebrogeometric computations of the cohomology action of Fourier– Mukai functors on the bounded derived category of coherent sheaves on the mirror Calabi–Yau manifold W. We obtain the complete dictionary between the two sides for the one complex parameter case of Calabi–Yau complete intersections in weighted projective spaces, as well as for some two parameter cases. We also find the complex of sheaves on W × W that corresponds to a loop in the moduli space of complex structures on M induced by a phase transition of W.
On Gorenstein projective, injective and flat dimensions  a functorial description with applications
, 2004
"... For a large class of rings, including all those encountered in algebraic geometry, we establish the conjectured Moritalike equivalence between the full subcategory of complexes of finite Gorenstein flat dimension and that of complexes of finite Gorenstein injective dimension. This functorial descr ..."
Abstract

Cited by 53 (18 self)
 Add to MetaCart
For a large class of rings, including all those encountered in algebraic geometry, we establish the conjectured Moritalike equivalence between the full subcategory of complexes of finite Gorenstein flat dimension and that of complexes of finite Gorenstein injective dimension. This functorial description meets the expectations and delivers a series of new results, which allows us to establish a wellrounded theory for Gorenstein dimensions. For any pair of adjoint functors, C
On the Cyclic Homology of Exact Categories
 JPAA
"... The cyclic homology of an exact category was defined by R. McCarthy [26] using the methods of F. Waldhausen [36]. McCarthy's theory enjoys a number of desirable properties, the most basic being the agreement property, i.e. the fact that when applied to the category of finitely generated projective m ..."
Abstract

Cited by 45 (1 self)
 Add to MetaCart
The cyclic homology of an exact category was defined by R. McCarthy [26] using the methods of F. Waldhausen [36]. McCarthy's theory enjoys a number of desirable properties, the most basic being the agreement property, i.e. the fact that when applied to the category of finitely generated projective modules over an algebra it specializes to the cyclic homology of the algebra. However, we show that McCarthy's theory cannot be both compatible with localizations and invariant under functors inducing equivalences in the derived category. This is our motivation for introducing a new theory for which all three properties hold: extension, invariance and localization. Thanks to these properties, the new theory can be computed explicitly for a number of categories of modules and sheaves.
Cluster mutation via quiver representations
 Comment. Math. Helv
"... Abstract. Matrix mutation appears in the definition of cluster algebras of Fomin and Zelevinsky. We give a representation theoretic interpretation of matrix mutation, using tilting theory in cluster categories of hereditary algebras. Using this, we obtain a representation theoretic interpretation of ..."
Abstract

Cited by 45 (15 self)
 Add to MetaCart
Abstract. Matrix mutation appears in the definition of cluster algebras of Fomin and Zelevinsky. We give a representation theoretic interpretation of matrix mutation, using tilting theory in cluster categories of hereditary algebras. Using this, we obtain a representation theoretic interpretation of cluster mutation in case of acyclic cluster algebras.
Stability conditions on K3 surfaces
"... Abstract. This paper contains a description of one connected component of the space of stability conditions on the bounded derived category of coherent sheaves on a complex algebraic K3 surface. 1. ..."
Abstract

Cited by 44 (5 self)
 Add to MetaCart
Abstract. This paper contains a description of one connected component of the space of stability conditions on the bounded derived category of coherent sheaves on a complex algebraic K3 surface. 1.