Results 1  10
of
533
Approximate Nearest Neighbors: Towards Removing the Curse of Dimensionality
, 1998
"... The nearest neighbor problem is the following: Given a set of n points P = fp 1 ; : : : ; png in some metric space X, preprocess P so as to efficiently answer queries which require finding the point in P closest to a query point q 2 X. We focus on the particularly interesting case of the ddimens ..."
Abstract

Cited by 715 (33 self)
 Add to MetaCart
The nearest neighbor problem is the following: Given a set of n points P = fp 1 ; : : : ; png in some metric space X, preprocess P so as to efficiently answer queries which require finding the point in P closest to a query point q 2 X. We focus on the particularly interesting case of the ddimensional Euclidean space where X = ! d under some l p norm. Despite decades of effort, the current solutions are far from satisfactory; in fact, for large d, in theory or in practice, they provide little improvement over the bruteforce algorithm which compares the query point to each data point. Of late, there has been some interest in the approximate nearest neighbors problem, which is: Find a point p 2 P that is an fflapproximate nearest neighbor of the query q in that for all p 0 2 P , d(p; q) (1 + ffl)d(p 0 ; q). We present two algorithmic results for the approximate version that significantly improve the known bounds: (a) preprocessing cost polynomial in n and d, and a trul...
DavenportSchinzel Sequences and Their Geometric Applications
, 1998
"... An (n; s) DavenportSchinzel sequence, for positive integers n and s, is a sequence composed of n distinct symbols with the properties that no two adjacent elements are equal, and that it does not contain, as a (possibly noncontiguous) subsequence, any alternation a \Delta \Delta \Delta b \Delta \ ..."
Abstract

Cited by 425 (121 self)
 Add to MetaCart
An (n; s) DavenportSchinzel sequence, for positive integers n and s, is a sequence composed of n distinct symbols with the properties that no two adjacent elements are equal, and that it does not contain, as a (possibly noncontiguous) subsequence, any alternation a \Delta \Delta \Delta b \Delta \Delta \Delta a \Delta \Delta \Delta b \Delta \Delta \Delta of length s + 2 between two distinct symbols a and b. The close relationship between DavenportSchinzel sequences and the combinatorial structure of lower envelopes of collections of functions make the sequences very attractive because a variety of geometric problems can be formulated in terms of lower envelopes. A nearlinear bound on the maximum length of DavenportSchinzel sequences enable us to derive sharp bounds on the combinatorial structure underlying various geometric problems, which in turn yields efficient algorithms for these problems.
Similarity search in high dimensions via hashing
, 1999
"... The nearest or nearneighbor query problems arise in a large variety of database applications, usually in the context of similarity searching. Of late, there has been increasing interest in building search/index structures for performing similarity search over highdimensional data, e.g., image dat ..."
Abstract

Cited by 415 (12 self)
 Add to MetaCart
The nearest or nearneighbor query problems arise in a large variety of database applications, usually in the context of similarity searching. Of late, there has been increasing interest in building search/index structures for performing similarity search over highdimensional data, e.g., image databases, document collections, timeseries databases, and genome databases. Unfortunately, all known techniques for solving this problem fall prey to the \curse of dimensionality. " That is, the data structures scale poorly with data dimensionality; in fact, if the number of dimensions exceeds 10 to 20, searching in kd trees and related structures involves the inspection of a large fraction of the database, thereby doing no better than bruteforce linear search. It has been suggested that since the selection of features and the choice of a distance metric in typical applications is rather heuristic, determining an approximate nearest neighbor should su ce for most practical purposes. In this paper, we examine a novel scheme for approximate similarity search based on hashing. The basic idea is to hash the points
Applications of Random Sampling in Computational Geometry, II
 Discrete Comput. Geom
, 1995
"... We use random sampling for several new geometric algorithms. The algorithms are "Las Vegas," and their expected bounds are with respect to the random behavior of the algorithms. These algorithms follow from new general results giving sharp bounds for the use of random subsets in geometric algorithms ..."
Abstract

Cited by 396 (12 self)
 Add to MetaCart
We use random sampling for several new geometric algorithms. The algorithms are "Las Vegas," and their expected bounds are with respect to the random behavior of the algorithms. These algorithms follow from new general results giving sharp bounds for the use of random subsets in geometric algorithms. These bounds show that random subsets can be used optimally for divideandconquer, and also give bounds for a simple, general technique for building geometric structures incrementally. One new algorithm reports all the intersecting pairs of a set of line segments in the plane, and requires O(A + n log n) expected time, where A is the number of intersecting pairs reported. The algorithm requires O(n) space in the worst case. Another algorithm computes the convex hull of n points in E d in O(n log n) expected time for d = 3, and O(n bd=2c ) expected time for d ? 3. The algorithm also gives fast expected times for random input points. Another algorithm computes the diameter of a set of n...
Simulation of Simplicity: A Technique to Cope with Degenerate Cases in Geometric Algorithms
 ACM TRANS. GRAPH
, 1990
"... This paper describes a generalpurpose programming technique, called the Simulation of Simplicity, which can be used to cope with degenerate input data for geometric algorithms. It relieves the programmer from the task to provide a consistent treatment for every single special case that can occur. T ..."
Abstract

Cited by 277 (21 self)
 Add to MetaCart
This paper describes a generalpurpose programming technique, called the Simulation of Simplicity, which can be used to cope with degenerate input data for geometric algorithms. It relieves the programmer from the task to provide a consistent treatment for every single special case that can occur. The programs that use the technique tend to be considerably smaller and more robust than those that do not use it. We believe that this technique will become a standard tool in writing geometric software.
The Power Crust
, 2001
"... The power crust is a construction which takes a sample of points from the surface of a threedimensional object and produces a surface mesh and an approximate medial axis. The approach is to first approximate the medial axis transform (MAT) of the object. We then use an inverse transform to produce ..."
Abstract

Cited by 201 (6 self)
 Add to MetaCart
The power crust is a construction which takes a sample of points from the surface of a threedimensional object and produces a surface mesh and an approximate medial axis. The approach is to first approximate the medial axis transform (MAT) of the object. We then use an inverse transform to produce the surface representation from the MAT.
Voronoi Diagrams and Delaunay Triangulations
 Computing in Euclidean Geometry
, 1992
"... The Voronoi diagram is a fundamental structure in computationalgeometry and arises naturally in many different fields. This chapter surveys properties of the Voronoi diagram and its geometric dual, the Delaunay triangulation. The emphasis is on practical algorithms for the construction of Voronoi ..."
Abstract

Cited by 198 (3 self)
 Add to MetaCart
The Voronoi diagram is a fundamental structure in computationalgeometry and arises naturally in many different fields. This chapter surveys properties of the Voronoi diagram and its geometric dual, the Delaunay triangulation. The emphasis is on practical algorithms for the construction of Voronoi diagrams. 1 Introduction Let S be a set of n points in ddimensional euclidean space E d . The points of S are called sites. The Voronoi diagram of S splits E d into regions with one region for each site, so that the points in the region for site s2S are closer to s than to any other site in S. The Delaunay triangulation of S is the unique triangulation of S so that there are no elements of S inside the circumsphere of any triangle. Here `triangulation' is extended from the planar usage to arbitrary dimension: a triangulation decomposes the convex hull of S into simplices using elements of S as vertices. The existence and uniqueness of the Delaunay triangulation are perhaps not obvio...
Provably Good Mesh Generation
 J. Comput. Syst. Sci
, 1990
"... We study several versions of the problem of generating triangular meshes for finite element methods. We show how to triangulate a planar point set or polygonally bounded domain with triangles of bounded aspect ratio; how to triangulate a planar point set with triangles having no obtuse angles; how t ..."
Abstract

Cited by 193 (11 self)
 Add to MetaCart
We study several versions of the problem of generating triangular meshes for finite element methods. We show how to triangulate a planar point set or polygonally bounded domain with triangles of bounded aspect ratio; how to triangulate a planar point set with triangles having no obtuse angles; how to triangulate a point set in arbitrary dimension with simplices of bounded aspect ratio; and how to produce a linearsize Delaunay triangulation of a multidimensional point set by adding a linear number of extra points. All our triangulations have size (number of triangles) within a constant factor of optimal, and run in optimal time O(n log n+k) with input of size n and output of size k. No previous work on mesh generation simultaneously guarantees wellshaped elements and small total size. 1. Introduction Geometric partitioning problems ask for the decomposition of a geometric input into simpler objects. These problems are fundamental in many areas, such as solid modeling, computeraided ...