Results 1  10
of
299
Bayes Factors
, 1995
"... In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null ..."
Abstract

Cited by 981 (70 self)
 Add to MetaCart
In a 1935 paper, and in his book Theory of Probability, Jeffreys developed a methodology for quantifying the evidence in favor of a scientific theory. The centerpiece was a number, now called the Bayes factor, which is the posterior odds of the null hypothesis when the prior probability on the null is onehalf. Although there has been much discussion of Bayesian hypothesis testing in the context of criticism of P values, less attention has been given to the Bayes factor as a practical tool of applied statistics. In this paper we review and discuss the uses of Bayes factors in the context of five scientific applications in genetics, sports, ecology, sociology and psychology.
Bayesian Density Estimation and Inference Using Mixtures
 Journal of the American Statistical Association
, 1994
"... We describe and illustrate Bayesian inference in models for density estimation using mixtures of Dirichlet processes. These models provide natural settings for density estimation, and are exemplified by special cases where data are modelled as a sample from mixtures of normal distributions. Efficien ..."
Abstract

Cited by 398 (17 self)
 Add to MetaCart
We describe and illustrate Bayesian inference in models for density estimation using mixtures of Dirichlet processes. These models provide natural settings for density estimation, and are exemplified by special cases where data are modelled as a sample from mixtures of normal distributions. Efficient simulation methods are used to approximate various prior, posterior and predictive distributions. This allows for direct inference on a variety of practical issues, including problems of local versus global smoothing, uncertainty about density estimates, assessment of modality, and the inference on the numbers of components. Also, convergence results are established for a general class of normal mixture models. Keywords: Kernel estimation; Mixtures of Dirichlet processes; Multimodality; Normal mixtures; Posterior sampling; Smoothing parameter estimation * Michael D. Escobar is Assistant Professor, Department of Statistics and Department of Preventive Medicine and Biostatistics, University ...
Understanding the MetropolisHastings Algorithm, The American Statistician 49
, 1995
"... Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at ..."
Abstract

Cited by 381 (20 self)
 Add to MetaCart
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
Stochastic Volatility: Likelihood Inference And Comparison With Arch Models
, 1994
"... this paper we exploit Gibbs sampling to provide a likelihood framework for the analysis of stochastic volatility models, demonstrating how to perform either maximum likelihood or Bayesian estimation. The paper includes an extensive Monte Carlo experiment which compares the efficiency of the maximum ..."
Abstract

Cited by 354 (37 self)
 Add to MetaCart
this paper we exploit Gibbs sampling to provide a likelihood framework for the analysis of stochastic volatility models, demonstrating how to perform either maximum likelihood or Bayesian estimation. The paper includes an extensive Monte Carlo experiment which compares the efficiency of the maximum likelihood estimator with that of quasilikelihood and Bayesian estimators proposed in the literature. We also compare the fit of the stochastic volatility model to that of ARCH models using the likelihood criterion to illustrate the flexibility of the framework presented. Some key words: ARCH, Bayes estimation, Gibbs sampler, Heteroscedasticity, Maximum likelihood, Quasimaximum likelihood, Simulation, Stochastic EM algorithm, Stochastic volatility, Stock returns. 1 INTRODUCTION
Operations for Learning with Graphical Models
 Journal of Artificial Intelligence Research
, 1994
"... This paper is a multidisciplinary review of empirical, statistical learning from a graphical model perspective. Wellknown examples of graphical models include Bayesian networks, directed graphs representing a Markov chain, and undirected networks representing a Markov field. These graphical models ..."
Abstract

Cited by 249 (12 self)
 Add to MetaCart
This paper is a multidisciplinary review of empirical, statistical learning from a graphical model perspective. Wellknown examples of graphical models include Bayesian networks, directed graphs representing a Markov chain, and undirected networks representing a Markov field. These graphical models are extended to model data analysis and empirical learning using the notation of plates. Graphical operations for simplifying and manipulating a problem are provided including decomposition, differentiation, and the manipulation of probability models from the exponential family. Two standard algorithm schemas for learning are reviewed in a graphical framework: Gibbs sampling and the expectation maximization algorithm. Using these operations and schemas, some popular algorithms can be synthesized from their graphical specification. This includes versions of linear regression, techniques for feedforward networks, and learning Gaussian and discrete Bayesian networks from data. The paper conclu...
Bayesian Model Averaging for Linear Regression Models
 Journal of the American Statistical Association
, 1997
"... We consider the problem of accounting for model uncertainty in linear regression models. Conditioning on a single selected model ignores model uncertainty, and thus leads to the underestimation of uncertainty when making inferences about quantities of interest. A Bayesian solution to this problem in ..."
Abstract

Cited by 184 (13 self)
 Add to MetaCart
We consider the problem of accounting for model uncertainty in linear regression models. Conditioning on a single selected model ignores model uncertainty, and thus leads to the underestimation of uncertainty when making inferences about quantities of interest. A Bayesian solution to this problem involves averaging over all possible models (i.e., combinations of predictors) when making inferences about quantities of
Rates of convergence of the Hastings and Metropolis algorithms
 ANNALS OF STATISTICS
, 1996
"... We apply recent results in Markov chain theory to Hastings and Metropolis algorithms with either independent or symmetric candidate distributions, and provide necessary and sufficient conditions for the algorithms to converge at a geometric rate to a prescribed distribution ß. In the independence ca ..."
Abstract

Cited by 163 (13 self)
 Add to MetaCart
We apply recent results in Markov chain theory to Hastings and Metropolis algorithms with either independent or symmetric candidate distributions, and provide necessary and sufficient conditions for the algorithms to converge at a geometric rate to a prescribed distribution ß. In the independence case (in IR k ) these indicate that geometric convergence essentially occurs if and only if the candidate density is bounded below by a multiple of ß; in the symmetric case (in IR only) we show geometric convergence essentially occurs if and only if ß has geometric tails. We also evaluate recently developed computable bounds on the rates of convergence in this context: examples show that these theoretical bounds can be inherently extremely conservative, although when the chain is stochastically monotone the bounds may well be effective.
Approaches for Bayesian variable selection
 Statistica Sinica
, 1997
"... Abstract: This paper describes and compares various hierarchical mixture prior formulations of variable selection uncertainty in normal linear regression models. These include the nonconjugate SSVS formulation of George and McCulloch (1993), as well as conjugate formulations which allow for analytic ..."
Abstract

Cited by 124 (5 self)
 Add to MetaCart
Abstract: This paper describes and compares various hierarchical mixture prior formulations of variable selection uncertainty in normal linear regression models. These include the nonconjugate SSVS formulation of George and McCulloch (1993), as well as conjugate formulations which allow for analytical simplification. Hyperparameter settings which base selection on practical significance, and the implications of using mixtures with point priors are discussed. Computational methods for posterior evaluation and exploration are considered. Rapid updating methods are seen to provide feasible methods for exhaustive evaluation using Gray Code sequencing in moderately sized problems, and fast Markov Chain Monte Carlo exploration in large problems. Estimation of normalization constants is seen to provide improved posterior estimates of individual model probabilities and the total visited probability. Various procedures are illustrated on simulated sample problems and on a real problem concerning the construction of financial index tracking portfolios.
Geometric Convergence and Central Limit Theorems for Multidimensional Hastings and Metropolis Algorithms
 Biometrika
, 1996
"... We develop results on geometric ergodicity of Markov chains and apply these and other recent results in Markov chain theory to multidimensional Hastings and Metropolis algorithms. For those based on random walk candidate distributions, we find sufficient conditions for moments and for moment genera ..."
Abstract

Cited by 123 (35 self)
 Add to MetaCart
We develop results on geometric ergodicity of Markov chains and apply these and other recent results in Markov chain theory to multidimensional Hastings and Metropolis algorithms. For those based on random walk candidate distributions, we find sufficient conditions for moments and for moment generating functions to converge at a geometric rate to a prescribed distribution . By phrasing the conditions in terms of the curvature of the densities we show that the results apply to all distributions with positive density of the form (x) = h(x) exp(p(x)) where h and p are polynomials on IR d and p has an appropriate "negativedefiniteness " property. From these results we further develop central limit theorems for the Metropolis algorithm. Converse results, showing nongeometric convergence rates for chains where the rejection rate is not bounded from unity, are also given; these show that the negativedefiniteness property is not redundant. Work supported in part by NSF Grant DMS920568...