Results 1  10
of
33
Using Limits of Parchments to Systematically Construct Institutions of Partial Algebras
 Recent Trends in Data Type Specifications. 11th Workshop on Specification of Abstract Data Types, volume 1130 of Lecture Notes in Computer Science
, 1996
"... this paper, so we leave them out here. Thus we can apply the idea of combining things via colimits to institutions themselves, with the special point that we have to take limits here instead of colimits. Taking limits in CAT results in categories of "amalgamated objects", i. e. we put signatures an ..."
Abstract

Cited by 15 (5 self)
 Add to MetaCart
this paper, so we leave them out here. Thus we can apply the idea of combining things via colimits to institutions themselves, with the special point that we have to take limits here instead of colimits. Taking limits in CAT results in categories of "amalgamated objects", i. e. we put signatures and models together at the level of single objects. In contrast to this, sentences are combined with colimits in Set (due to the contravariant direction of the sentence component). That is, sets of sentences are combined. To show how this works, we introduce some wellknown institutions and morphisms between them.
Combining and Representing Logical Systems Using ModelTheoretic Parchments
 In Recent Trends in Algebraic Development Techniques, volume 1376 of LNCS
, 1997
"... . The paper addresses important problems of building complex logical systems and their representations in universal logics in a systematic way. We adopt the modeltheoretic view of logic as captured in the notions of institution and of parchment (an algebraic way of presenting institutions). We prop ..."
Abstract

Cited by 15 (4 self)
 Add to MetaCart
. The paper addresses important problems of building complex logical systems and their representations in universal logics in a systematic way. We adopt the modeltheoretic view of logic as captured in the notions of institution and of parchment (an algebraic way of presenting institutions). We propose a new, modified notion of parchment together with parchment morphisms and representations. In contrast to the original parchment definition and our earlier work, in modeltheoretic parchments introduced here the universal semantic structure is distributed over individual signatures and models. We lift formal properties of the categories of institutions and their representations to this level: the category of modeltheoretic parchments is complete, and their representations may be put together using categorical limits as well. However, modeltheoretic parchments provide a more adequate framework for systematic combination of logical systems than institutions. We indicate how the necessar...
Structured theory presentations and logic representations
 ANNALS OF PURE AND APPLIED LOGIC
, 1994
"... The purpose of a logical framework such as LF is to provide a language for defining logical systems suitable for use in a logicindependent proof development environment. All inferential activity in an object logic (in particular, proof search) is to be conducted in the logical framework via the ..."
Abstract

Cited by 14 (2 self)
 Add to MetaCart
The purpose of a logical framework such as LF is to provide a language for defining logical systems suitable for use in a logicindependent proof development environment. All inferential activity in an object logic (in particular, proof search) is to be conducted in the logical framework via the representation of that logic in the framework. An important tool for controlling search in an object logic, the need for which is motivated by the difficulty of reasoning about large and complex systems, is the use of structured theory presentations. In this paper a rudimentary language of structured theory presentations is presented, and the use of this structure in proof search for an arbitrary object logic is explored. The behaviour of structured theory presentations under representation in a logical framework is studied, focusing on the problem of "lifting" presentations from the object logic to the metalogic of the framework. The topic of imposing structure on logic presentations...
Theoroidal maps as algebraic simulations
 WADT 2004, LNCS 3423
, 2005
"... Abstract. Computational systems are often represented by means of Kripke structures, and related using simulations. We propose rewriting logic as a flexible and executable framework in which to formally specify these mathematical models, and introduce a particular and elegant way of representing sim ..."
Abstract

Cited by 12 (8 self)
 Add to MetaCart
Abstract. Computational systems are often represented by means of Kripke structures, and related using simulations. We propose rewriting logic as a flexible and executable framework in which to formally specify these mathematical models, and introduce a particular and elegant way of representing simulations in it: theoroidal maps. A categorical viewpoint is very natural in the study of these structures and we show how to organize Kripke structures in categories that afterwards are lifted to the rewriting logic’s level. We illustrate the use of theoroidal maps with two applications: predicate abstraction and the study of fairness constraints. 1
Fibring Logics with Topos Semantics
, 2002
"... The concept of fibring is extended to higherorder logics with arbitrary modalities and binding operators. A general completeness theorem is established for such logics including HOL and with the metatheorem of deduction. As a corollary, completeness is shown to be preserved when fibring such rich ..."
Abstract

Cited by 11 (6 self)
 Add to MetaCart
The concept of fibring is extended to higherorder logics with arbitrary modalities and binding operators. A general completeness theorem is established for such logics including HOL and with the metatheorem of deduction. As a corollary, completeness is shown to be preserved when fibring such rich logics. This result is extended to weaker logics in the cases where fibring preserves conservativeness of HOLenrichments. Soundness is shown to be preserved by fibring without any further assumptions.
A categorical approach to simulations, in
 of Lecture Notes in Computer Science
, 2005
"... Abstract. Simulations are a very natural way of relating concurrent systems, which are mathematically modeled by Kripke structures. The range of available notions of simulations makes it very natural to adopt a categorical viewpoint in which Kripke structures become the objects of several categories ..."
Abstract

Cited by 8 (3 self)
 Add to MetaCart
Abstract. Simulations are a very natural way of relating concurrent systems, which are mathematically modeled by Kripke structures. The range of available notions of simulations makes it very natural to adopt a categorical viewpoint in which Kripke structures become the objects of several categories while the morphisms are obtained from the corresponding notion of simulation. Here we define in detail several of those categories, collect them together in various institutions, and study their most interesting properties. 1
Context Institutions
, 1996
"... . The paper introduces a notion of a context institution. The notion is explicitly illustrated by two standard examples. Morphism between context institutions are introduced, thus yielding a category of context institutions. Some expected constructions on context institutions are presented as functo ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
. The paper introduces a notion of a context institution. The notion is explicitly illustrated by two standard examples. Morphism between context institutions are introduced, thus yielding a category of context institutions. Some expected constructions on context institutions are presented as functors from this category. The potential usefulness of these notions is illustrated by one such a construction, yielding a Hoare logic for an arbitrary small context institution satisfying mild extra assumptions. 1 Introduction The theory of institutions ([4], [6]) has proved its usefulness in the area of foundations of software specification and development. The modeltheoretic view of logical systems advocated in the theory of institutions captures very well the idea that in computer science applications of logic what we are really interested in are models. We always try to specify (logical) properties of concrete objects standard examples can be programs, database management systems or ...
Combining Logics: Parchments Revisited
 In Recent Trends in Algebraic Development Techniques, volume 2267 of LNCS
, 2001
"... generalizes the common situation when truthvalues are ordered, we require a whole Tarskian closure operation as in [2]. In the sequel, AlgSig denotes the category of algebraic many sorted signatures with a distinguished sort (for formulae) and morphisms preserving it. Given such a signature hS; ..."
Abstract

Cited by 7 (5 self)
 Add to MetaCart
generalizes the common situation when truthvalues are ordered, we require a whole Tarskian closure operation as in [2]. In the sequel, AlgSig denotes the category of algebraic many sorted signatures with a distinguished sort (for formulae) and morphisms preserving it. Given such a signature hS; Oi, we denote by Alg(hS; Oi) the category of hS; Oi algebras, and by cAlg(hS; Oi) the class of all pairs hA; i with A 2 jAlg(hS; Oi)j and a closure operation on A . Denition 1. A layered parchment is a tuple P = hSig; L; Mi where: { Sig is a category (of abstract<F13
Structuring and Modularity
 on Algebraic Foundations of Systems Specification, chapter 6
, 1996
"... this paper, we will describe the main techniques for the semantic definition of some of the most used structuring and modular constructs. Our main aim will be to study the generic, "institutionindependent ", version of each construct. However, in order to provide intuition, in most cases, we will fi ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
this paper, we will describe the main techniques for the semantic definition of some of the most used structuring and modular constructs. Our main aim will be to study the generic, "institutionindependent ", version of each construct. However, in order to provide intuition, in most cases, we will first study these constructions in connection to equational logic.