Results 1  10
of
149
View morphing
 In Computer Graphics (SIGGRAPH’96
, 1996
"... Image morphing techniques can generate compelling 2D transitions between images. However, differences in object pose or viewpoint often cause unnatural distortions in image morphs that are difficult to correct manually. Using basic principles of projective geometry, this paper introduces a simple ex ..."
Abstract

Cited by 279 (20 self)
 Add to MetaCart
Image morphing techniques can generate compelling 2D transitions between images. However, differences in object pose or viewpoint often cause unnatural distortions in image morphs that are difficult to correct manually. Using basic principles of projective geometry, this paper introduces a simple extension to image morphing that correctly handles 3D projective camera and scene transformations. The technique, called view morphing, works by prewarping two images prior to computing a morph and then postwarping the interpolated images. Because no knowledge of 3D shape is required, the technique may be applied to photographs and drawings, as well as rendered scenes. The ability to synthesize changes both in viewpoint and image structure affords a wide variety of interesting 3D effects via simple image transformations.
The Fundamental matrix: theory, algorithms, and stability analysis
 International Journal of Computer Vision
, 1995
"... In this paper we analyze in some detail the geometry of a pair of cameras, i.e. a stereo rig. Contrarily to what has been done in the past and is still done currently, for example in stereo or motion analysis, we do not assume that the intrinsic parameters of the cameras are known (coordinates of th ..."
Abstract

Cited by 273 (13 self)
 Add to MetaCart
In this paper we analyze in some detail the geometry of a pair of cameras, i.e. a stereo rig. Contrarily to what has been done in the past and is still done currently, for example in stereo or motion analysis, we do not assume that the intrinsic parameters of the cameras are known (coordinates of the principal points, pixels aspect ratio and focal lengths). This is important for two reasons. First, it is more realistic in applications where these parameters may vary according to the task (active vision). Second, the general case considered here, captures all the relevant information that is necessary for establishing correspondences between two pairs of images. This information is fundamentally projective and is hidden in a confusing manner in the commonly used formalism of the Essential matrix introduced by LonguetHiggins [40]. This paper clarifies the projective nature of the correspondence problem in stereo and shows that the epipolar geometry can be summarized in one 3 \Theta 3 ma...
Euclidean reconstruction from uncalibrated views
 Applications of Invariance in Computer Vision
, 1993
"... The possibility of calibrating a camera from image data alone, based on matched points identified in a series of images by a moving camera was suggested by Mayband and Faugeras. This result implies the possibility of Euclidean reconstruction from a series of images with a moving camera, or equivalen ..."
Abstract

Cited by 259 (14 self)
 Add to MetaCart
(Show Context)
The possibility of calibrating a camera from image data alone, based on matched points identified in a series of images by a moving camera was suggested by Mayband and Faugeras. This result implies the possibility of Euclidean reconstruction from a series of images with a moving camera, or equivalently, Euclidean structurefrommotion from an uncalibrated camera. No tractable algorithm for implementing their methods for more than three images have been previously reported. This paper gives a practical algorithm for Euclidean reconstruction from several views with the same camera. The algorithm is demonstrated on synthetic and real data and is shown to behave very robustly in the presence of noise giving excellent calibration and reconstruction results. 1
Autocalibration and the absolute quadric
 in Proc. IEEE Conf. Computer Vision, Pattern Recognition
, 1997
"... We describe a new method for camera autocalibration and scaled Euclidean structure and motion, from three or more views taken by a moving camera with fixed but unknown intrinsic parameters. The motion constancy of these is used to rectify an initial projective reconstruction. Euclidean scene structu ..."
Abstract

Cited by 254 (7 self)
 Add to MetaCart
(Show Context)
We describe a new method for camera autocalibration and scaled Euclidean structure and motion, from three or more views taken by a moving camera with fixed but unknown intrinsic parameters. The motion constancy of these is used to rectify an initial projective reconstruction. Euclidean scene structure is formulated in terms of the absolute quadric — the singular dual 3D quadric ( rank 3 matrix) giving the Euclidean dotproduct between plane normals. This is equivalent to the traditional absolute conic but simpler to use. It encodes both affine and Euclidean structure, and projects very simply to the dual absolute image conic which encodes camera calibration. Requiring the projection to be constant gives a bilinear constraint between the absolute quadric and image conic, from which both can be recovered nonlinearly from images, or quasilinearly from. Calibration and Euclidean structure follow easily. The nonlinear method is stabler, faster, more accurate and more general than the quasilinear one. It is based on a general constrained optimization technique — sequential quadratic programming — that may well be useful in other vision problems.
In Defense of the EightPoint Algorithm
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1997
"... Abstract—The fundamental matrix is a basic tool in the analysis of scenes taken with two uncalibrated cameras, and the eightpoint algorithm is a frequently cited method for computing the fundamental matrix from a set of eight or more point matches. It has the advantage of simplicity of implementati ..."
Abstract

Cited by 203 (1 self)
 Add to MetaCart
(Show Context)
Abstract—The fundamental matrix is a basic tool in the analysis of scenes taken with two uncalibrated cameras, and the eightpoint algorithm is a frequently cited method for computing the fundamental matrix from a set of eight or more point matches. It has the advantage of simplicity of implementation. The prevailing view is, however, that it is extremely susceptible to noise and hence virtually useless for most purposes. This paper challenges that view, by showing that by preceding the algorithm with a very simple normalization (translation and scaling) of the coordinates of the matched points, results are obtained comparable with the best iterative algorithms. This improved performance is justified by theory and verified by extensive experiments on real images. Index Terms—Fundamental matrix, eightpoint algorithm, condition number, epipolar structure, stereo vision.
Linear Pushbroom Cameras
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1994
"... Modelling th# push broom sensors commonly used in satellite imagery is quite di#cult and computationally intensive due to th# complicated motion ofth# orbiting satellite with respect to th# rotating earth# In addition, th# math#46 tical model is quite complex, involving orbital dynamics, andh#(0k is ..."
Abstract

Cited by 172 (6 self)
 Add to MetaCart
(Show Context)
Modelling th# push broom sensors commonly used in satellite imagery is quite di#cult and computationally intensive due to th# complicated motion ofth# orbiting satellite with respect to th# rotating earth# In addition, th# math#46 tical model is quite complex, involving orbital dynamics, andh#(0k is di#cult to analyze. Inth#A paper, a simplified model of apush broom sensor(th# linear push broom model) is introduced. Ith as th e advantage of computational simplicity wh#A9 atth# same time giving very accurate results compared with th# full orbitingpush broom model. Meth# ds are given for solving th# major standardph# togrammetric problems for th e linear push broom sensor. Simple noniterative solutions are given for th# following problems : computation of th# model parameters from groundcontrol points; determination of relative model parameters from image correspondences between two images; scene reconstruction given image correspondences and groundcontrol points. In addition, th# linearpush broom model leads toth#0 retical insigh ts th# t will be approximately valid for th# full model as well.Th# epipolar geometry of linear push broom cameras in investigated and sh own to be totally di#erent from th at of a perspective camera. Neverth eless, a matrix analogous to th e essential matrix of perspective cameras issh own to exist for linear push broom sensors. Fromth#0 it is sh# wn th# t a scene is determined up to an a#ne transformation from two viewswith linearpush broom cameras. Keywords :push broom sensor, satellite image, essential matrixph# togrammetry, camera model The research describ ed in this paper hasb een supportedb y DARPA Contract #MDA97291 C0053 1 Real Push broom sensors are commonly used in satellite cameras, notably th# SPOT satellite forth# generatio...
In Defence of the 8point Algorithm
"... The fundamental matrix is a basic tool in the analysis of scenes taken with two uncalibrated cameras, and the 8point algoritm is a frequent#e cit#3 met#9 d for comput#10 t he fundament al ma t# ix from a set of 8 or more point mat ches. It hast he advant age of simplicit y of implement at ion. The ..."
Abstract

Cited by 159 (3 self)
 Add to MetaCart
The fundamental matrix is a basic tool in the analysis of scenes taken with two uncalibrated cameras, and the 8point algoritm is a frequent#e cit#3 met#9 d for comput#10 t he fundament al ma t# ix from a set of 8 or more point mat ches. It hast he advant age of simplicit y of implement at ion. The prevailing view is, however,t#(9 it isext#3791( suscept#43 t o noise and hence virtually useless for most purposes. This paper challengest#en view, by showing t#ng by precedingt he algorit hm wit h a very simple normalizat ion(t ranslat ion and scaling) oft he coordinat es oft he mat ched point#( result# are obt# ined comparable wit# t he best it## at ive algorit#209 This improved performance is just#690 byt#1082 and verified byext#259( e experiment s on real images.
Algebraic Functions For Recognition
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1994
"... In the general case, a trilinear relationship between three perspective views is shown to exist. The trilinearity result is shown to be of much practical use in visual recognition by alignment  yielding a direct reprojection method that cuts through the computations of camera transformation, sce ..."
Abstract

Cited by 159 (30 self)
 Add to MetaCart
(Show Context)
In the general case, a trilinear relationship between three perspective views is shown to exist. The trilinearity result is shown to be of much practical use in visual recognition by alignment  yielding a direct reprojection method that cuts through the computations of camera transformation, scene structure and epipolar geometry. Moreover, the direct method is linear and sets a new lower theoretical bound on the minimal number of points that are required for a linear solution for the task of reprojection. The proof of the central result may be of further interest as it demonstrates certain regularities across homographies of the plane and introduces new view invariants. Experiments on simulated and real image data were conducted, including a comparative analysis with epipolar intersection and the linear combination methods, with results indicating a greater degree of robustness in practice and a higher level of performance in reprojection tasks. Keywords Visual Recognition, Al...
Faugeras O. D.: Selfcalibration of a moving camera from point correspondences and fundamental matrices
 International Journal of Computer Vision
, 1997
"... ..."
Robust Methods for Estimating Pose and a Sensitivity Analysis
, 1994
"... This paper mathematically analyzes and proposes new solutions for the problem of estimat ing the camera 3D location and orientation (Pose Deter'migrations) from a matched set of 3D model and 2D image landmark features. Leastsquares techniques for line tokens, which minimize both rotation and ..."
Abstract

Cited by 100 (10 self)
 Add to MetaCart
This paper mathematically analyzes and proposes new solutions for the problem of estimat ing the camera 3D location and orientation (Pose Deter'migrations) from a matched set of 3D model and 2D image landmark features. Leastsquares techniques for line tokens, which minimize both rotation and translation simultaneously, are developed and shown to be far superior to the earlier techniques which solved for rotation first and then translation. However, leastsquares techniques fail catastrophically when outliers (or gross errors) are present in the match data. Outliers arise frequently due to incorrect correspondences or gross errors in the 3D model. Robust techniques for pose determination are developed to handle data contaminated by fewer than 50.0 % outliers.