Results 1  10
of
71
RegionBased Memory Management
, 1997
"... This paper describes a memory management discipline for programs that perform dynamic memory allocation and deallocation. At runtime, all values are put into regions. The store consists of a stack of regions. All points of region allocation and deallocation are inferred automatically, using a type ..."
Abstract

Cited by 280 (8 self)
 Add to MetaCart
This paper describes a memory management discipline for programs that perform dynamic memory allocation and deallocation. At runtime, all values are put into regions. The store consists of a stack of regions. All points of region allocation and deallocation are inferred automatically, using a type and effect based program analysis. The scheme does not assume the presence of a garbage collector. The scheme was first presented by Tofte and Talpin (1994); subsequently, it has been tested in The ML Kit with Regions, a regionbased, garbagecollection free implementation of the Standard ML Core language, which includes recursive datatypes, higherorder functions and updatable references (Birkedal et al. 96, Elsman and Hallenberg 95). This paper defines a regionbased dynamic semantics for a skeletal programming language extracted from Standard ML. We present the inference system which specifies where regions can be allocated and deallocated and a detailed proof that the system is sound wi...
ObjectOriented Type Inference
 OOPSLA'91
, 1991
"... We present a new approach to inferring types in untyped objectoriented programs with inheritance, assignments, and late binding. It guarantees that all messages are understood, annotates the program with type information, allows polymorphic methods, and can be used as the basis of an optimizing co ..."
Abstract

Cited by 221 (18 self)
 Add to MetaCart
We present a new approach to inferring types in untyped objectoriented programs with inheritance, assignments, and late binding. It guarantees that all messages are understood, annotates the program with type information, allows polymorphic methods, and can be used as the basis of an optimizing compiler. Types are finite sets of classes and subtyping is set inclusion. Using a trace graph, our algorithm constructs a set of conditional type constraints and computes the least solution by least fixedpoint derivation.
Information flow inference for ML
 ACM Trans. Program. Lang. Syst
"... This paper presents a typebased information flow analysis for a callbyvalue λcalculus equipped with references, exceptions and letpolymorphism, which we refer to as Core ML. The type system is constraintbased and has decidable type inference. Its noninterference proof is reasonably lightweigh ..."
Abstract

Cited by 218 (4 self)
 Add to MetaCart
This paper presents a typebased information flow analysis for a callbyvalue λcalculus equipped with references, exceptions and letpolymorphism, which we refer to as Core ML. The type system is constraintbased and has decidable type inference. Its noninterference proof is reasonably lightweight, thanks to the use of a number of orthogonal techniques. First, a syntactic segregation between values and expressions allows a lighter formulation of the type system. Second, noninterference is reduced to subject reduction for a nonstandard language extension. Lastly, a semisyntactic approach to type soundness allows dealing with constraintbased polymorphism separately.
Type Inference with Polymorphic Recursion
 Transactions on Programming Languages and Systems
, 1991
"... The DamasMilner Calculus is the typed Acalculus underlying the type system for ML and several other strongly typed polymorphic functional languages such as Mirandal and Haskell. Mycroft has extended its problematic monomorphic typing rule for recursive definitions with a polymorphic typing rule. H ..."
Abstract

Cited by 136 (0 self)
 Add to MetaCart
The DamasMilner Calculus is the typed Acalculus underlying the type system for ML and several other strongly typed polymorphic functional languages such as Mirandal and Haskell. Mycroft has extended its problematic monomorphic typing rule for recursive definitions with a polymorphic typing rule. He proved the resulting type system, which we call the MilnerMycroft Calculus, sound with respect to Milner’s semantics, and showed that it preserves the principal typing property of the DamasMilner Calculus. The extension is of practical significance in typed logic programming languages and, more generally, in any language with (mutually) recursive definitions. In this paper we show that the type inference problem for the MilnerMycroft Calculus is logspace equivalent to semiunification, the problem of solving subsumption inequations between firstorder terms. This result has been proved independently by Kfoury et al. In connection with the recently established undecidability of semiunification this implies that typability in the MilnerMycroft Calculus is undecidable. We present some reasons why type inference with polymorphic recursion appears to be practical despite its undecidability. This also sheds some light on the observed practicality of ML
Phantom Types
, 2003
"... Phantom types are data types with type constraints associated with dierent cases. Examples of phantom types include typed type representations and typed higherorder abstract syntax trees. These types can be used to support typed generic functions, dynamic typing, and staged compilation in highe ..."
Abstract

Cited by 103 (2 self)
 Add to MetaCart
Phantom types are data types with type constraints associated with dierent cases. Examples of phantom types include typed type representations and typed higherorder abstract syntax trees. These types can be used to support typed generic functions, dynamic typing, and staged compilation in higherorder, statically typed languages such as Haskell or Standard ML. In our system, type constraints can be equations between type constructors as well as type functions of higherorder kinds. We prove type soundness and decidability for a Haskelllike language extended by phantom types.
Putting Type Annotations to Work
, 1996
"... We study an extension of the HindleyMilner system with explicit type scheme annotations and type declarations. The system can express polymorphic function arguments, userdefined data types with abstract components, and structure types with polymorphic fields. More generally, all programs of the po ..."
Abstract

Cited by 95 (1 self)
 Add to MetaCart
We study an extension of the HindleyMilner system with explicit type scheme annotations and type declarations. The system can express polymorphic function arguments, userdefined data types with abstract components, and structure types with polymorphic fields. More generally, all programs of the polymorphic lambda calculus can be encoded by a translation between typing derivations. We show that type reconstruction in this system can be reduced to the decidable problem of firstorder unification under a mixed prefix.
What Are Principal Typings and What Are They Good For?
, 1995
"... We demonstrate the pragmatic value of the principal typing property, a property more general than ML's principal type property, by studying a type system with principal typings. The type system is based on rank 2 intersection types and is closely related to ML. Its principal typing property prov ..."
Abstract

Cited by 93 (0 self)
 Add to MetaCart
We demonstrate the pragmatic value of the principal typing property, a property more general than ML's principal type property, by studying a type system with principal typings. The type system is based on rank 2 intersection types and is closely related to ML. Its principal typing property provides elegant support for separate compilation, including "smartest recompilation" and incremental type inference, and for accurate type error messages. Moreover, it motivates a novel rule for typing recursive definitions that can type many examples of polymorphic recursion.
Nested datatypes
 In MPC’98, volume 1422 of LNCS
, 1998
"... Abstract. A nested datatype, also known as a nonregular datatype, is a parametrised datatype whose declaration involves different instances of the accompanying type parameters. Nested datatypes have been mostly ignored in functional programming until recently, but they are turning out to be both th ..."
Abstract

Cited by 79 (5 self)
 Add to MetaCart
Abstract. A nested datatype, also known as a nonregular datatype, is a parametrised datatype whose declaration involves different instances of the accompanying type parameters. Nested datatypes have been mostly ignored in functional programming until recently, but they are turning out to be both theoretically important and useful in practice. The aim of this paper is to suggest a functorial semantics for such datatypes, with an associated calculational theory that mirrors and extends the standard theory for regular datatypes. Though elegant and generic, the proposed approach appears more limited than one would like, and some of the limitations are discussed. 1
A Region Inference Algorithm
 ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS
, 1998
"... This article presents an algorithm which implements the specification. We prove that the algorithm is sound with respect to the region inference rules and that it always terminates even though the region inference rules permit polymorphic recursion in regions. The algorithm is the result of several ..."
Abstract

Cited by 70 (4 self)
 Add to MetaCart
This article presents an algorithm which implements the specification. We prove that the algorithm is sound with respect to the region inference rules and that it always terminates even though the region inference rules permit polymorphic recursion in regions. The algorithm is the result of several years of experiments with region inference algorithms in the ML Kit, a compiler from Standard ML to assembly language. We report on practical experience with the algorithm and give hints on how to implement it.
Generic Haskell: practice and theory
 In Generic Programming, Advanced Lectures, volume 2793 of LNCS
, 2003
"... Abstract. Generic Haskell is an extension of Haskell that supports the construction of generic programs. These lecture notes describe the basic constructs of Generic Haskell and highlight the underlying theory. Generic programming aims at making programming more effective by making it more general. ..."
Abstract

Cited by 65 (23 self)
 Add to MetaCart
Abstract. Generic Haskell is an extension of Haskell that supports the construction of generic programs. These lecture notes describe the basic constructs of Generic Haskell and highlight the underlying theory. Generic programming aims at making programming more effective by making it more general. Generic programs often embody nontraditional kinds of polymorphism. Generic Haskell is an extension of Haskell [38] that supports the construction of generic programs. Generic Haskell adds to Haskell the notion of structural polymorphism, the ability to define a function (or a type) by induction on the structure of types. Such a function is generic in the sense that it works not only for a specific type but for a whole class of types. Typical examples include equality, parsing and pretty printing, serialising, ordering, hashing, and so on. The lecture notes on Generic Haskell are organized into two parts. This first part motivates the need for genericity, describes the basic constructs of Generic Haskell, puts Generic Haskell into perspective, and highlights the underlying theory. The second part entitled “Generic Haskell: applications ” delves deeper into the language discussing three nontrivial applications of Generic Haskell: generic dictionaries, compressing XML documents, and a generic version of the zipper data type. The first part is organized as follows. Section 1 provides some background discussing type systems in general and the type system of Haskell in particular. Furthermore, it motivates the basic constructs of Generic Haskell. Section 2 takes a closer look at generic definitions and shows how to define some popular generic functions. Section 3 highlights the theory underlying Generic Haskell and discusses its implementation. Section 4 concludes. 1