Results 1 
9 of
9
LinearTime PointerMachine Algorithms for Least Common Ancestors, MST Verification, and Dominators
 IN PROCEEDINGS OF THE THIRTIETH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING
, 1998
"... We present two new data structure toolsdisjoint set union with bottomup linking, and pointerbased radix sortand combine them with bottomlevel microtrees to devise the first lineartime pointermachine algorithms for offline least common ancestors, minimum spanning tree (MST) verification, ..."
Abstract

Cited by 29 (4 self)
 Add to MetaCart
(Show Context)
We present two new data structure toolsdisjoint set union with bottomup linking, and pointerbased radix sortand combine them with bottomlevel microtrees to devise the first lineartime pointermachine algorithms for offline least common ancestors, minimum spanning tree (MST) verification, randomized MST construction, and computing dominators in a flowgraph.
A New, Simpler LinearTime Dominators Algorithm
 ACM Transactions on Programming Languages and Systems
, 1998
"... this article is organized as follows. Section 2 outlines Lengauer and Tarjan's approach. Section 3 gives a broad overview of our algorithm and dierentiates it from previous work. Section 4 presents our algorithm in detail, and Section 5 analyzes its running time. Section 6 presents our new path ..."
Abstract

Cited by 28 (5 self)
 Add to MetaCart
this article is organized as follows. Section 2 outlines Lengauer and Tarjan's approach. Section 3 gives a broad overview of our algorithm and dierentiates it from previous work. Section 4 presents our algorithm in detail, and Section 5 analyzes its running time. Section 6 presents our new pathcompression result, on which the analysis relies. Section 7 describes our implementation, and Section 8 reports experimental results. We conclude in Section 9
Data Structural Bootstrapping, Linear Path Compression, and Catenable Heap Ordered Double Ended Queues
 SIAM Journal on Computing
, 1992
"... A deque with heap order is a linear list of elements with realvalued keys which allows insertions and deletions of elements at both ends of the list. It also allows the findmin (equivalently findmax) operation, which returns the element of least (greatest) key, but it does not allow a general delet ..."
Abstract

Cited by 18 (7 self)
 Add to MetaCart
A deque with heap order is a linear list of elements with realvalued keys which allows insertions and deletions of elements at both ends of the list. It also allows the findmin (equivalently findmax) operation, which returns the element of least (greatest) key, but it does not allow a general deletemin (deletemax) operation. Such a data structure is also called a mindeque (maxdeque) . Whereas implementing mindeques in constant time per operation is a solved problem, catenating mindeques in sublogarithmic time has until now remained open. This paper provides an efficient implementation of catenable mindeques, yielding constant amortized time per operation. The important algorithmic technique employed is an idea which is best described as data structural bootstrapping: We abstract mindeques so that their elements represent other mindeques, effecting catenation while preserving heap order. The efficiency of the resulting data structure depends upon the complexity of a special case of pa...
Splay trees, DavenportSchinzel sequences, and the deque conjecture
"... We introduce a new technique to bound the asymptotic performance of splay trees. The basic idea is to transcribe, in an indirect fashion, the rotations performed by the splay tree as a DavenportSchinzel sequence, none of whose subsequences are isomorphic to a fixed forbidden subsequence. We direct ..."
Abstract

Cited by 18 (6 self)
 Add to MetaCart
(Show Context)
We introduce a new technique to bound the asymptotic performance of splay trees. The basic idea is to transcribe, in an indirect fashion, the rotations performed by the splay tree as a DavenportSchinzel sequence, none of whose subsequences are isomorphic to a fixed forbidden subsequence. We direct this technique towards Tarjan’s deque conjecture and prove that n deque operations take only O(nα ∗ (n)) time, where α ∗ (n) is the minimum number of applications of the inverseAckermann function mapping n to a constant. We are optimistic that this approach could be directed towards other open conjectures on splay trees such as the traversal and split conjectures.
Applications of forbidden 01 matrices to search tree and path compression based data structures
, 2009
"... In this paper we improve, reprove, and simplify a variety of theorems concerning the performance of data structures based on path compression and search trees. We apply a technique very familiar to computational geometers but still foreign to many researchers in (nongeometric) algorithms and data s ..."
Abstract

Cited by 6 (5 self)
 Add to MetaCart
(Show Context)
In this paper we improve, reprove, and simplify a variety of theorems concerning the performance of data structures based on path compression and search trees. We apply a technique very familiar to computational geometers but still foreign to many researchers in (nongeometric) algorithms and data structures, namely, to bound the complexity of an object via its forbidden substructures. To analyze an algorithm or data structure in the forbidden substructure framework one proceeds in three discrete steps. First, one transcribes the behavior of the algorithm as some combinatorial object M; for example, M may be a graph, sequence, permutation, matrix, set system, or tree. (The size of M should ideally be linear in the running time.) Second, one shows that M excludes some forbidden substructure P, and third, one bounds the size of any object avoiding this substructure. The power of this framework derives from the fact that M lies in a more pristine environment and that upper bounds on the size of a Pfree object M may be reused in different contexts. All of our proofs begin by transcribing the individual operations of a dynamic data structure
Origins of nonlinearity in DavenportSchinzel sequences
, 2009
"... A generalized DavenportSchinzel sequence is one over a finite alphabet that excludes subsequences isomorphic to a fixed forbidden subsequence. The fundamental problem in this area is bounding the maximum length of such sequences. Following Klazar, we let Expσ, nq be the maximum length of a sequence ..."
Abstract

Cited by 6 (6 self)
 Add to MetaCart
A generalized DavenportSchinzel sequence is one over a finite alphabet that excludes subsequences isomorphic to a fixed forbidden subsequence. The fundamental problem in this area is bounding the maximum length of such sequences. Following Klazar, we let Expσ, nq be the maximum length of a sequence over an alphabet of size n excluding subsequences isomorphic to σ. It has been proved that for every σ, Expσ, nq is either linear or very close to linear. In particular it is Opn2 αpnqOp1q q, where α is the inverseAckermann function and Op1q depends on σ. In much the same way that the complete graphs K5 and K3,3 represent the minimal causes of nonplanarity, there must exist a set ΦNonlin of minimal nonlinear forbidden subsequences. Very little is known about the size or membership of ΦNonlin. In this paper we construct an infinite antichain of nonlinear forbidden subsequences which, we argue, strongly supports the conjecture that ΦNonlin is itself infinite. Perhaps the most novel contribution of this paper is a succinct, humanly readable code for expressing the structure of forbidden subsequences.
Sources of Superlinearity in DavenportSchinzel Sequences
"... A generalized DavenportSchinzel sequence is one over a finite alphabet that contains no subsequences isomorphic to a fixed forbidden subsequence. One of the fundamental problems in this area is bounding (asymptotically) the maximum length of such sequences. Following Klazar, let Ex(σ, n) be the max ..."
Abstract
 Add to MetaCart
(Show Context)
A generalized DavenportSchinzel sequence is one over a finite alphabet that contains no subsequences isomorphic to a fixed forbidden subsequence. One of the fundamental problems in this area is bounding (asymptotically) the maximum length of such sequences. Following Klazar, let Ex(σ, n) be the maximum length of a sequence over an alphabet of size n avoiding subsequences isomorphic to σ. It has been proved that for every σ, Ex(σ, n) is either linear or very close to linear; in particular it is O(n2 α(n)O(1)), where α is the inverseAckermann function and O(1) depends on σ. However, very little is known about the properties of σ that induce superlinearity of Ex(σ, n). In this paper we exhibit an infinite family of independent superlinear forbidden subsequences. To be specific, we show that there are 17 prototypical superlinear forbidden subsequences, some of which can be made arbitrarily long through a simple padding operation. Perhaps the most novel part of our constructions is a new succinct code for representing superlinear forbidden subsequences. 1