Results 1  10
of
269
A PolynomialTime Approximation Algorithm for the Permanent of a Matrix with NonNegative Entries
 Journal of the ACM
, 2004
"... Abstract. We present a polynomialtime randomized algorithm for estimating the permanent of an arbitrary n ×n matrix with nonnegative entries. This algorithm—technically a “fullypolynomial randomized approximation scheme”—computes an approximation that is, with high probability, within arbitrarily ..."
Abstract

Cited by 324 (25 self)
 Add to MetaCart
Abstract. We present a polynomialtime randomized algorithm for estimating the permanent of an arbitrary n ×n matrix with nonnegative entries. This algorithm—technically a “fullypolynomial randomized approximation scheme”—computes an approximation that is, with high probability, within arbitrarily small specified relative error of the true value of the permanent. Categories and Subject Descriptors: F.2.2 [Analysis of algorithms and problem complexity]: Nonnumerical
Expander Codes
 IEEE Transactions on Information Theory
, 1996
"... We present a new class of asymptotically good, linear errorcorrecting codes based upon expander graphs. These codes have linear time sequential decoding algorithms, logarithmic time parallel decoding algorithms with a linear number of processors, and are simple to understand. We present both random ..."
Abstract

Cited by 275 (10 self)
 Add to MetaCart
We present a new class of asymptotically good, linear errorcorrecting codes based upon expander graphs. These codes have linear time sequential decoding algorithms, logarithmic time parallel decoding algorithms with a linear number of processors, and are simple to understand. We present both randomized and explicit constructions for some of these codes. Experimental results demonstrate the extremely good performance of the randomly chosen codes. 1. Introduction We present a new class of error correcting codes derived from expander graphs. These codes have the advantage that they can be decoded very efficiently. That makes them particularly suitable for devices which must decode cheaply, such as compact disk players and remote satellite receivers. We hope that the connection we draw between expander graphs and error correcting codes will stimulate research in both fields. 1.1. Error correcting codes An error correcting code is a mapping from messages to codewords such that the mappi...
Expander Flows, Geometric Embeddings and Graph Partitioning
 IN 36TH ANNUAL SYMPOSIUM ON THE THEORY OF COMPUTING
, 2004
"... We give a O( log n)approximation algorithm for sparsest cut, balanced separator, and graph conductance problems. This improves the O(log n)approximation of Leighton and Rao (1988). We use a wellknown semidefinite relaxation with triangle inequality constraints. Central to our analysis is a ..."
Abstract

Cited by 238 (18 self)
 Add to MetaCart
We give a O( log n)approximation algorithm for sparsest cut, balanced separator, and graph conductance problems. This improves the O(log n)approximation of Leighton and Rao (1988). We use a wellknown semidefinite relaxation with triangle inequality constraints. Central to our analysis is a geometric theorem about projections of point sets in , whose proof makes essential use of a phenomenon called measure concentration.
The Markov Chain Monte Carlo method: an approach to approximate counting and integration
, 1996
"... In the area of statistical physics, Monte Carlo algorithms based on Markov chain simulation have been in use for many years. The validity of these algorithms depends crucially on the rate of convergence to equilibrium of the Markov chain being simulated. Unfortunately, the classical theory of stocha ..."
Abstract

Cited by 234 (13 self)
 Add to MetaCart
In the area of statistical physics, Monte Carlo algorithms based on Markov chain simulation have been in use for many years. The validity of these algorithms depends crucially on the rate of convergence to equilibrium of the Markov chain being simulated. Unfortunately, the classical theory of stochastic processes hardly touches on the sort of nonasymptotic analysis required in this application. As a consequence, it had previously not been possible to make useful, mathematically rigorous statements about the quality of the estimates obtained. Within the last ten years, analytical tools have been devised with the aim of correcting this deficiency. As well as permitting the analysis of Monte Carlo algorithms for classical problems in statistical physics, the introduction of these tools has spurred the development of new approximation algorithms for a wider class of problems in combinatorial enumeration and optimization. The “Markov chain Monte Carlo ” method has been applied to a variety of such problems, and often provides the only known efficient (i.e., polynomial time) solution technique.
Expander Graphs and their Applications
, 2003
"... Contents 1 The Magical Mystery Tour 7 1.1 Some Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.1 Hardness results for linear transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.2 Error Correcting Codes . . . . . . . ..."
Abstract

Cited by 188 (5 self)
 Add to MetaCart
Contents 1 The Magical Mystery Tour 7 1.1 Some Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.1 Hardness results for linear transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.2 Error Correcting Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1.3 Derandomizing Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2 Magical Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2.1 A Super Concentrator with O(n) edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2.2 Error Correcting Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2.3 Derandomizing Random Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Improved bounds for mixing rates of Markov chains and multicommodity flow
 Combinatorics, Probability and Computing
, 1992
"... The paper is concerned with tools for the quantitative analysis of finite Markov chains whose states are combinatorial structures. Chains of this kind have algorithmic applications in many areas, including random sampling, approximate counting, statistical physics and combinatorial optimisation. The ..."
Abstract

Cited by 186 (8 self)
 Add to MetaCart
The paper is concerned with tools for the quantitative analysis of finite Markov chains whose states are combinatorial structures. Chains of this kind have algorithmic applications in many areas, including random sampling, approximate counting, statistical physics and combinatorial optimisation. The efficiency of the resulting algorithms depends crucially on the mixing rate of the chain, i.e., the time taken for it to reach its stationary or equilibrium distribution. The paper presents a new upper bound on the mixing rate, based on the solution to a multicommodity flow problem in the Markov chain viewed as a graph. The bound gives sharper estimates for the mixing rate of several important complex Markov chains. As a result, improved bounds are obtained for the runtimes of randomised approximation algorithms for various problems, including computing the permanent of a 01 matrix, counting matchings in graphs, and computing the partition function of a ferromagnetic Ising system. Moreove...
The Laplacian spectrum of graphs
 Graph Theory, Combinatorics, and Applications
, 1991
"... Abstract. The paper is essentially a survey of known results about the spectrum of the Laplacian matrix of graphs with special emphasis on the second smallest Laplacian eigenvalue λ2 and its relation to numerous graph invariants, including connectivity, expanding properties, isoperimetric number, m ..."
Abstract

Cited by 151 (1 self)
 Add to MetaCart
Abstract. The paper is essentially a survey of known results about the spectrum of the Laplacian matrix of graphs with special emphasis on the second smallest Laplacian eigenvalue λ2 and its relation to numerous graph invariants, including connectivity, expanding properties, isoperimetric number, maximum cut, independence number, genus, diameter, mean distance, and bandwidthtype parameters of a graph. Some new results and generalizations are added. † This article appeared in “Graph Theory, Combinatorics, and Applications”, Vol. 2,
Spectral Partitioning Works: Planar graphs and finite element meshes
 In IEEE Symposium on Foundations of Computer Science
, 1996
"... Spectral partitioning methods use the Fiedler vectorthe eigenvector of the secondsmallest eigenvalue of the Laplacian matrixto find a small separator of a graph. These methods are important components of many scientific numerical algorithms and have been demonstrated by experiment to work extr ..."
Abstract

Cited by 144 (8 self)
 Add to MetaCart
Spectral partitioning methods use the Fiedler vectorthe eigenvector of the secondsmallest eigenvalue of the Laplacian matrixto find a small separator of a graph. These methods are important components of many scientific numerical algorithms and have been demonstrated by experiment to work extremely well. In this paper, we show that spectral partitioning methods work well on boundeddegree planar graphs and finite element meshes the classes of graphs to which they are usually applied. While naive spectral bisection does not necessarily work, we prove that spectral partitioning techniques can be used to produce separators whose ratio of vertices removed to edges cut is O( p n) for boundeddegree planar graphs and twodimensional meshes and O i n 1=d j for wellshaped ddimensional meshes. The heart of our analysis is an upper bound on the secondsmallest eigenvalues of the Laplacian matrices of these graphs. 1. Introduction Spectral partitioning has become one of the mos...
THE ELECTRICAL RESISTANCE OF A GRAPH CAPTURES ITS COMMUTE AND COVER TIMES
"... View an nvertex, medge undirected graph as an electrical network with unit resistors as edges. We extend known relations between random walks and electrical networks by showing that resistance in this network is intimately connected with the lengths of random walks on the graph. For example, the c ..."
Abstract

Cited by 143 (6 self)
 Add to MetaCart
View an nvertex, medge undirected graph as an electrical network with unit resistors as edges. We extend known relations between random walks and electrical networks by showing that resistance in this network is intimately connected with the lengths of random walks on the graph. For example, the commute time between two vertices s and t (the expected length of a random walk from s to t and back) is precisely characterized by the e ective resistance Rst between s and t: commute time = 2mRst. As a corollary, the cover time (the expected length of a random walk visiting all vertices) is characterized by the maximum resistance R in the graph to within a factor of log n: mR cover time O(mR log n). For many graphs, the bounds on cover time obtained in this manner are better than those obtained from previous techniques such as the eigenvalues of the adjacency matrix. In particular, we improve known bounds on cover times for highdegree graphs and expanders, and give new proofs of known results for multidimensional meshes. Moreover, resistance seems to provide an intuitively appealing and tractable approach to these problems.