Results 1  10
of
286
Distinctive Image Features from ScaleInvariant Keypoints
, 2003
"... This paper presents a method for extracting distinctive invariant features from images, which can be used to perform reliable matching between different images of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a a substa ..."
Abstract

Cited by 5090 (20 self)
 Add to MetaCart
This paper presents a method for extracting distinctive invariant features from images, which can be used to perform reliable matching between different images of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a a substantial range of affine distortion, addition of noise, change in 3D viewpoint, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearestneighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through leastsquares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near realtime performance.
Object class recognition by unsupervised scaleinvariant learning
 In CVPR
, 2003
"... We present a method to learn and recognize object class models from unlabeled and unsegmented cluttered scenes in a scale invariant manner. Objects are modeled as flexible constellations of parts. A probabilistic representation is used for all aspects of the object: shape, appearance, occlusion and ..."
Abstract

Cited by 871 (45 self)
 Add to MetaCart
We present a method to learn and recognize object class models from unlabeled and unsegmented cluttered scenes in a scale invariant manner. Objects are modeled as flexible constellations of parts. A probabilistic representation is used for all aspects of the object: shape, appearance, occlusion and relative scale. An entropybased feature detector is used to select regions and their scale within the image. In learning the parameters of the scaleinvariant object model are estimated. This is done using expectationmaximization in a maximumlikelihood setting. In recognition, this model is used in a Bayesian manner to classify images. The flexible nature of the model is demonstrated by excellent results over a range of datasets including geometrically constrained classes (e.g. faces, cars) and flexible objects (such as animals). 1.
A New Point Matching Algorithm for NonRigid Registration
, 2002
"... Featurebased methods for nonrigid registration frequently encounter the correspondence problem. Regardless of whether points, lines, curves or surface parameterizations are used, featurebased nonrigid matching requires us to automatically solve for correspondences between two sets of features. I ..."
Abstract

Cited by 235 (2 self)
 Add to MetaCart
Featurebased methods for nonrigid registration frequently encounter the correspondence problem. Regardless of whether points, lines, curves or surface parameterizations are used, featurebased nonrigid matching requires us to automatically solve for correspondences between two sets of features. In addition, there could be many features in either set that have no counterparts in the other. This outlier rejection problem further complicates an already di#cult correspondence problem. We formulate featurebased nonrigid registration as a nonrigid point matching problem. After a careful review of the problem and an indepth examination of two types of methods previously designed for rigid robust point matching (RPM), we propose a new general framework for nonrigid point matching. We consider it a general framework because it does not depend on any particular form of spatial mapping. We have also developed an algorithmthe TPSRPM algorithmwith the thinplate spline (TPS) as the parameterization of the nonrigid spatial mapping and the softassign for the correspondence. The performance of the TPSRPM algorithm is demonstrated and validated in a series of carefully designed synthetic experiments. In each of these experiments, an empirical comparison with the popular iterated closest point (ICP) algorithm is also provided. Finally, we apply the algorithm to the problem of nonrigid registration of cortical anatomical structures which is required in brain mapping. While these results are somewhat preliminary, they clearly demonstrate the applicability of our approach to real world tasks involving featurebased nonrigid registration.
Robot Pose Estimation in Unknown Environments by Matching 2D Range Scans
, 1994
"... A mobile robot exploring an unknown environment has no absolute frame of reference for its position, other than features it detects through its sensors. Using distinguishable landmarks is one possible approach, but it requires solving the object recognition problem. In particular, when the robot use ..."
Abstract

Cited by 228 (8 self)
 Add to MetaCart
A mobile robot exploring an unknown environment has no absolute frame of reference for its position, other than features it detects through its sensors. Using distinguishable landmarks is one possible approach, but it requires solving the object recognition problem. In particular, when the robot uses twodimensional laser range scans for localization, it is difficult to accurately detect and localize landmarks in the environment (such as corners and occlusions) from the range scans. In this paper, we develop two new iterative algorithms to register a range scan to a previous scan so as to compute relative robot positions in an unknown environment, that avoid the above problems. The first algorithm is based on matching data points with tangent directions in two scans and minimizing a distance function in order to solve the displacementbetween the scans. The second algorithm establishes correspondences between points in the two scans and then solves the pointtopoint leastsquares probl...
A search engine for 3d models
 ACM Transactions on Graphics
, 2003
"... As the number of 3D models available on the Web grows, there is an increasing need for a search engine to help people find them. Unfortunately, traditional textbased search techniques are not always effective for 3D data. In this paper, we investigate new shapebased search methods. The key challen ..."
Abstract

Cited by 228 (21 self)
 Add to MetaCart
As the number of 3D models available on the Web grows, there is an increasing need for a search engine to help people find them. Unfortunately, traditional textbased search techniques are not always effective for 3D data. In this paper, we investigate new shapebased search methods. The key challenges are to develop query methods simple enough for novice users and matching algorithms robust enough to work for arbitrary polygonal models. We present a webbased search engine system that supports queries based on 3D sketches, 2D sketches, 3D
Data Association in Stochastic Mapping Using the Joint Compatibility Test
, 2001
"... In this paper, we address the problem of robust data association for simultaneous vehicle localization and map building. We show that the classical gated nearest neighbor approach, which considers each matching between sensor observations and features independently, ignores the fact that measurement ..."
Abstract

Cited by 184 (16 self)
 Add to MetaCart
In this paper, we address the problem of robust data association for simultaneous vehicle localization and map building. We show that the classical gated nearest neighbor approach, which considers each matching between sensor observations and features independently, ignores the fact that measurement prediction errors are correlated. This leads to easily accepting incorrect matchings when clutter or vehicle errors increase. We propose a new measurement of the joint compatibility of a set of pairings that successfully rejects spurious matchings. We show experimentally that this restrictive criterion can be used to efficiently search for the best solution to data association. Unlike the nearest neighbor, this method provides a robust solution in complex situations, such as cluttered environments or when revisiting previously mapped regions.
Stochastic Completion Fields: A Neural Model of Illusory Contour Shape and Salience
 Neural Computation
, 1995
"... We describe an algorithm and representation level theory of illusory contour shape and salience. Unlike previous theories, our model is derived from a single assumption namely, that the prior probability distribution of boundary completion shape can be modeled by a random walk in a lattice whose ..."
Abstract

Cited by 177 (14 self)
 Add to MetaCart
We describe an algorithm and representation level theory of illusory contour shape and salience. Unlike previous theories, our model is derived from a single assumption namely, that the prior probability distribution of boundary completion shape can be modeled by a random walk in a lattice whose points are positions and orientations in the image plane (i.e., the space which one can reasonably assume is represented by neurons of the mammalian visual cortex). Our model does not employ numerical relaxation or other explicit minimization, but instead relies on the fact that the probability that a particle following a random walk will pass through a given position and orientation on a path joining two boundary fragments can be computed directly as the product of two vectorfield convolutions. We show that for the random walk we define, the maximum likelihood paths are curves of least energy, that is, on average, random walks follow paths commonly assumed to model the shape of illusory co...
A New Algorithm for NonRigid Point Matching
 IN CVPR
, 2000
"... We present a new robust point matching algorithm (RPM) that can jointly estimate the correspondence and nonrigid transformations between two pointsets that may be of different sizes. The algorithm utilizes the softassign for the correspondence and the thinplate spline for the nonrigid mapping. E ..."
Abstract

Cited by 157 (7 self)
 Add to MetaCart
We present a new robust point matching algorithm (RPM) that can jointly estimate the correspondence and nonrigid transformations between two pointsets that may be of different sizes. The algorithm utilizes the softassign for the correspondence and the thinplate spline for the nonrigid mapping. Embedded within a deterministic annealing framework, the algorithm can automatically reject a fraction of the points as outliers. Experiments on both 2D synthetic pointsets with varying degrees of deformation, noise and outliers, and on real 3D sulcal pointsets (extracted from brain MRI) demonstrate the robustness of the algorithm.
Training models of shape from sets of examples
 Proc. BMVC92, SpringerVerlag
, 1992
"... A method for building flexible shape models is presented in which a shape is represented by a set of labelled points. The technique determines the statistics of the points over a collection of example shapes. The mean positions of the points give an average shape and a number of modes of variation a ..."
Abstract

Cited by 153 (4 self)
 Add to MetaCart
A method for building flexible shape models is presented in which a shape is represented by a set of labelled points. The technique determines the statistics of the points over a collection of example shapes. The mean positions of the points give an average shape and a number of modes of variation are determined describing the main ways in which the example shapes tend to deform from the average. In this way allowed variation in shape can be included in the model. The method produces a compact flexible 'Point Distribution Model' with a small number of linearly independent parameters, which can be used during image search. We demonstrate the application of the Point Distribution Model in describing two classes of shapes. 1
New Approaches to Robotics
 Science
, 1991
"... In order to build autonomous robots that can carry out useful work in unstructured environments new approaches have been developed to building intelligent systems. The relationship to traditional academic robotics and traditional artificial intelligence is examined. In the new approaches a tight cou ..."
Abstract

Cited by 146 (2 self)
 Add to MetaCart
In order to build autonomous robots that can carry out useful work in unstructured environments new approaches have been developed to building intelligent systems. The relationship to traditional academic robotics and traditional artificial intelligence is examined. In the new approaches a tight coupling of sensing to action produces architectures for intelligence that are networks of simple computational elements which are quite broad, but not very deep. Recent work within this approach has demonstrated the use of representations, expectations, plans, goals, and learning, but without resorting to the traditional uses, of central, abstractly manipulable or symbolic representations. Perception within these systems is often an active process, and the dynamics