Results 1  10
of
64
Fast approximate energy minimization via graph cuts
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2001
"... In this paper we address the problem of minimizing a large class of energy functions that occur in early vision. The major restriction is that the energy function’s smoothness term must only involve pairs of pixels. We propose two algorithms that use graph cuts to compute a local minimum even when v ..."
Abstract

Cited by 1384 (52 self)
 Add to MetaCart
In this paper we address the problem of minimizing a large class of energy functions that occur in early vision. The major restriction is that the energy function’s smoothness term must only involve pairs of pixels. We propose two algorithms that use graph cuts to compute a local minimum even when very large moves are allowed. The first move we consider is an αβswap: for a pair of labels α, β, this move exchanges the labels between an arbitrary set of pixels labeled α and another arbitrary set labeled β. Our first algorithm generates a labeling such that there is no swap move that decreases the energy. The second move we consider is an αexpansion: for a label α, this move assigns an arbitrary set of pixels the label α. Our second
A Graduated Assignment Algorithm for Graph Matching
, 1996
"... A graduated assignment algorithm for graph matching is presented which is fast and accurate even in the presence of high noise. By combining graduated nonconvexity, twoway (assignment) constraints, and sparsity, large improvements in accuracy and speed are achieved. Its low order computational comp ..."
Abstract

Cited by 285 (15 self)
 Add to MetaCart
A graduated assignment algorithm for graph matching is presented which is fast and accurate even in the presence of high noise. By combining graduated nonconvexity, twoway (assignment) constraints, and sparsity, large improvements in accuracy and speed are achieved. Its low order computational complexity [O(lm), where l and m are the number of links in the two graphs] and robustness in the presence of noise offer advantages over traditional combinatorial approaches. The algorithm, not restricted to any special class of graph, is applied to subgraph isomorphism, weighted graph matching, and attributed relational graph matching. To illustrate the performance of the algorithm, attributed relational graphs derived from objects are matched. Then, results from twentyfive thousand experiments conducted on 100 node random graphs of varying types (graphs with only zeroone links, weighted graphs, and graphs with node attributes and multiple link types) are reported. No comparable results have...
Robust Anisotropic Diffusion
, 1998
"... Relations between anisotropic diffusion and robust statistics are described in this paper. Specifically, we show that anisotropic diffusion can be seen as a robust estimation procedure that estimates a piecewise smooth image from a noisy input image. The "edgestopping" function in the anisotropic d ..."
Abstract

Cited by 278 (16 self)
 Add to MetaCart
Relations between anisotropic diffusion and robust statistics are described in this paper. Specifically, we show that anisotropic diffusion can be seen as a robust estimation procedure that estimates a piecewise smooth image from a noisy input image. The "edgestopping" function in the anisotropic diffusion equation is closely related to the error norm and influence function in the robust estimation framework. This connection leads to a new "edgestopping" function based on Tukey's biweight robust estimator, that preserves sharper boundaries than previous formulations and improves the automatic stopping of the diffusion. The robust statistical interpretation also provides a means for detecting the boundaries (edges) between the piecewise smooth regions in an image that has been smoothed with anisotropic diffusion. Additionally, we derive a relationship between anisotropic diffusion and regularization with line processes. Adding constraints on the spatial organization of the ...
On the Unification Line Processes, Outlier Rejection, and Robust Statistics with Applications in Early Vision
, 1996
"... The modeling of spatial discontinuities for problems such as surface recovery, segmentation, image reconstruction, and optical flow has been intensely studied in computer vision. While "lineprocess" models of discontinuities have received a great deal of attention, there has been recent interest i ..."
Abstract

Cited by 190 (8 self)
 Add to MetaCart
The modeling of spatial discontinuities for problems such as surface recovery, segmentation, image reconstruction, and optical flow has been intensely studied in computer vision. While "lineprocess" models of discontinuities have received a great deal of attention, there has been recent interest in the use of robust statistical techniques to account for discontinuities. This paper unifies the two approaches. To achieve this we generalize the notion of a "line process" to that of an analog "outlier process" and show how a problem formulated in terms of outlier processes can be viewed in terms of robust statistics. We also characterize a class of robust statistical problems for which an equivalent outlierprocess formulation exists and give a straightforward method for converting a robust estimation problem into an outlierprocess formulation. We show how prior assumptions about the spatial structure of outliers can be expressed as constraints on the recovered analog outlier processes and how traditional continuation methods can be extended to the explicit outlierprocess formulation. These results indicate that the outlierprocess approach provides a general framework which subsumes the traditional lineprocess approaches as well as a wide class of robust estimation problems. Examples in surface reconstruction, image segmentation, and optical flow are presented to illustrate the use of outlier processes and to show how the relationship between outlier processes and robust statistics can be exploited. An appendix provides a catalog of common robust error norms and their equivalent outlierprocess formulations.
Prior Learning and Gibbs ReactionDiffusion
, 1997
"... This article addresses two important themes in early visual computation: rst it presents a novel theory for learning the universal statistics of natural images { a prior model for typical cluttered scenes of the world { from a set of natural images, second it proposes a general framework of designi ..."
Abstract

Cited by 148 (18 self)
 Add to MetaCart
This article addresses two important themes in early visual computation: rst it presents a novel theory for learning the universal statistics of natural images { a prior model for typical cluttered scenes of the world { from a set of natural images, second it proposes a general framework of designing reactiondiusion equations for image processing. We start by studying the statistics of natural images including the scale invariant properties, then generic prior models were learned to duplicate the observed statistics, based on the minimax entropy theory studied in two previous papers. The resulting Gibbs distributions have potentials of the form U(I; ; S) = P K I)(x; y)) with S = fF g being a set of lters and = f the potential functions. The learned Gibbs distributions con rm and improve the form of existing prior models such as lineprocess, but in contrast to all previous models, inverted potentials (i.e. (x) decreasing as a function of jxj) were found to be necessary. We nd that the partial dierential equations given by gradient descent on U(I; ; S) are essentially reactiondiusion equations, where the usual energy terms produce anisotropic diusion while the inverted energy terms produce reaction associated with pattern formation, enhancing preferred image features. We illustrate how these models can be used for texture pattern rendering, denoising, image enhancement and clutter removal by careful choice of both prior and data models of this type, incorporating the appropriate features. Song Chun Zhu is now with the Computer Science Department, Stanford University, Stanford, CA 94305, and David Mumford is with the Division of Applied Mathematics, Brown University, Providence, RI 02912. This work started when the authors were at ...
New Algorithms for 2D and 3D Point Matching: Pose Estimation and Correspondence
"... A fundamental open problem in computer visiondetermining pose and correspondence between two sets of points in spaceis solved with a novel, fast [O(nm)], robust and easily implementable algorithm. The technique works on noisy 2D or 3D point sets that may be of unequal sizes and may differ by n ..."
Abstract

Cited by 85 (19 self)
 Add to MetaCart
A fundamental open problem in computer visiondetermining pose and correspondence between two sets of points in spaceis solved with a novel, fast [O(nm)], robust and easily implementable algorithm. The technique works on noisy 2D or 3D point sets that may be of unequal sizes and may differ by nonrigid transformations. Using a combination of optimization techniques such as deterministic annealing and the softassign, which have recently emerged out of the recurrent neural network/statistical physics framework, analog objective functions describing the problems are minimized. Over thirty thousand experiments, on randomly generated points sets with varying amounts of noise and missing and spurious points, and on handwritten character sets demonstrate the robustness of the algorithm. Keywords: Pointmatching, pose estimation, correspondence, neural networks, optimization, softassign, deterministic annealing, affine. 1 Introduction Matching the representations of two images has long...
Efficient GraphBased Energy Minimization Methods In Computer Vision
, 1999
"... ms (we show that exact minimization in NPhard in these cases). These algorithms produce a local minimum in interesting large move spaces. Furthermore, one of them nds a solution within a known factor from the optimum. The algorithms are iterative and compute several graph cuts at each iteration. Th ..."
Abstract

Cited by 83 (5 self)
 Add to MetaCart
ms (we show that exact minimization in NPhard in these cases). These algorithms produce a local minimum in interesting large move spaces. Furthermore, one of them nds a solution within a known factor from the optimum. The algorithms are iterative and compute several graph cuts at each iteration. The running time at each iteration is eectively linear due to the special graph structure. In practice it takes just a few iterations to converge. Moreover most of the progress happens during the rst iteration. For a certain piecewise constant prior we adapt the algorithms developed for the piecewise smooth prior. One of them nds a solution within a factor of two from the optimum. In addition we develop a third algorithm which nds a local minimum in yet another move space. We demonstrate the eectiveness of our approach on image restoration, stereo, and motion. For the data with ground truth, our methods signicantly outperform standard methods. Biographical Sketch Olga
A Review of Nonlinear Diffusion Filtering
, 1997
"... . This paper gives an overview of scalespace and image enhancement techniques which are based on parabolic partial differential equations in divergence form. In the nonlinear setting this filter class allows to integrate apriori knowledge into the evolution. We sketch basic ideas behind the differ ..."
Abstract

Cited by 79 (7 self)
 Add to MetaCart
. This paper gives an overview of scalespace and image enhancement techniques which are based on parabolic partial differential equations in divergence form. In the nonlinear setting this filter class allows to integrate apriori knowledge into the evolution. We sketch basic ideas behind the different filter models, discuss their theoretical foundations and scalespace properties, discrete aspects, suitable algorithms, generalizations, and applications. 1 Introduction During the last decade nonlinear diffusion filters have become a powerful and wellfounded tool in multiscale image analysis. These models allow to include apriori knowledge into the scalespace evolution, and they lead to an image simplification which simultaneously preserves or even enhances semantically important information such as edges, lines, or flowlike structures. Many papers have appeared proposing different models, investigating their theoretical foundations, and describing interesting applications. For a n...
Coupled Geodesic Active Regions for Image Segmentation: A Level Set Approach
 In European Conference in Computer Vision
, 1999
"... . This paper presents a novel variational method for image segmentation that unifies boundary and regionbased information sources under the Geodesic Active Region framework. A statistical analysis based on the Minimum Description Length criterion and the Maximum Likelihood Principle for the obs ..."
Abstract

Cited by 67 (2 self)
 Add to MetaCart
. This paper presents a novel variational method for image segmentation that unifies boundary and regionbased information sources under the Geodesic Active Region framework. A statistical analysis based on the Minimum Description Length criterion and the Maximum Likelihood Principle for the observed density function (image histogram) using a mixture of Gaussian elements, indicates the number of the different regions and their intensity properties. Then, the boundary information is determined using a probabilistic edge detector, while the region information is estimated using the Gaussian components of the mixture model. The defined objective function is minimized using a gradientdescent method where a level set approach is used to implement the resulting PDE system. According to the motion equations, the set of initial curves is propagated toward the segmentation result under the influence of boundary and regionbased segmentation forces, and being constrained by a regul...
Geodesic Active Regions: A new framework to deal with frame partition problems in Computer Vision
, 2002
"... This paper presents a novel variational framework for dealing with frame partition problems in Computer Vision by the propagation of curves. This framework integrates boundary and regionbased frame partition modules under a curvebased energy framework, which aims at finding a set of minimal le ..."
Abstract

Cited by 56 (9 self)
 Add to MetaCart
This paper presents a novel variational framework for dealing with frame partition problems in Computer Vision by the propagation of curves. This framework integrates boundary and regionbased frame partition modules under a curvebased energy framework, which aims at finding a set of minimal length curves that preserve three main properties: (i) they are regular and smooth, (ii) they are attracted by the boundary points (boundarybased information), (ii) and they create a partition that is optimal according to the expected region properties of the different hypotheses (regionbased information). The defined objective function is minimized using a gradient descent method. According to the obtained motion equations, the set of initial curves is propagated towards the best partition under the influence of boundary and regionbased forces, and being constrained by a regularity force. The changes of topology are naturally handled thanks to the level set implementation. Furthermore, a coupled multiphase propagation is proposed that imposes the idea of mutually exclusive propagating curves, and increases the robustness as well as the convergence rate. The proposed framework has been validated using three important applications in Computer Vision, the tasks of image and supervised texture segmentation in lowlevel vision and the task of motion estimation and tracking in motion analysis