Results 1  10
of
42
A New RecursionTheoretic Characterization Of The Polytime Functions
 COMPUTATIONAL COMPLEXITY
, 1992
"... We give a recursiontheoretic characterization of FP which describes polynomial time computation independently of any externally imposed resource bounds. In particular, this syntactic characterization avoids the explicit size bounds on recursion (and the initial function 2 xy ) of Cobham. ..."
Abstract

Cited by 191 (7 self)
 Add to MetaCart
We give a recursiontheoretic characterization of FP which describes polynomial time computation independently of any externally imposed resource bounds. In particular, this syntactic characterization avoids the explicit size bounds on recursion (and the initial function 2 xy ) of Cobham.
Predicative Recursion and Computational Complexity
, 1992
"... The purpose of this thesis is to give a "foundational" characterization of some common complexity classes. Such a characterization is distinguished by the fact that no explicit resource bounds are used. For example, we characterize the polynomial time computable functions without making an ..."
Abstract

Cited by 46 (3 self)
 Add to MetaCart
The purpose of this thesis is to give a "foundational" characterization of some common complexity classes. Such a characterization is distinguished by the fact that no explicit resource bounds are used. For example, we characterize the polynomial time computable functions without making any direct reference to polynomials, time, or even computation. Complexity classes characterized in this way include polynomial time, the functional polytime hierarchy, the logspace decidable problems, and NC. After developing these "resource free" definitions, we apply them to redeveloping the feasible logical system of Cook and Urquhart, and show how this firstorder system relates to the secondorder system of Leivant. The connection is an interesting one since the systems were defined independently and have what appear to be very different rules for the principle of induction. Furthermore it is interesting to see, albeit in a very specific context, how to retract a second order statement, ("inducti...
Characterizations of the Basic Feasible Functionals of Finite Type (Extended Abstract)
 Feasible Mathematics: A Mathematical Sciences Institute Workshop
, 1990
"... Stephen A. Cook and Bruce M. Kapron Department of Computer Science University of Toronto Toronto, Canada M5S 1A4 1 Introduction Functionals are functions which take natural numbers and other functionals as arguments and return natural numbers as values. The class of "feasible" functional ..."
Abstract

Cited by 27 (6 self)
 Add to MetaCart
Stephen A. Cook and Bruce M. Kapron Department of Computer Science University of Toronto Toronto, Canada M5S 1A4 1 Introduction Functionals are functions which take natural numbers and other functionals as arguments and return natural numbers as values. The class of "feasible" functionals of finite type was introduced in [6] via the typed lambda calculus, and used to interpret certain formal systems of arithmetic: systems capturing the notion of "feasibly constructive proof" (we equate feasibility with polynomial time computability) . Here we name the functionals of [6] the basic feasible functionals and justify the designation by presenting results which include two programming style characterizations of the class. We also give examples of both feasible and infeasible functionals, and argue that the notion plays a natural role in complexity theory. Type 2 functionals take numbers and ordinary numerical functions as arguments. When these argument functions are 01 valued (i.e. sets) ...
Efficient First Order Functional Program Interpreter With Time Bound Certifications
, 2000
"... We demonstrate that the class of rst order functional programs over lists which terminate by multiset path ordering and admit a polynomial quasiinterpretation, is exactly the class of function computable in polynomial time. The interest of this result lies (i) on the simplicity of the conditions on ..."
Abstract

Cited by 27 (10 self)
 Add to MetaCart
We demonstrate that the class of rst order functional programs over lists which terminate by multiset path ordering and admit a polynomial quasiinterpretation, is exactly the class of function computable in polynomial time. The interest of this result lies (i) on the simplicity of the conditions on programs to certify their complexity, (ii) on the fact that an important class of natural programs is captured, (iii) and on potential applications on program optimizations. 1 Introduction This paper is part of a general investigation on the implicit complexity of a specication. To illustrate what we mean, we write below the recursive rules that computes the longest common subsequences of two words. More precisely, given two strings u = u1 um and v = v1 vn of f0; 1g , a common subsequence of length k is dened by two sequences of indices i 1 < < i k and j1 < < jk satisfying u i q = v j q . lcs(; y) ! 0 lcs(x; ) ! 0 lcs(i(x); i(y)) ! lcs(x; y) + 1 lcs(i(...
Computational complexity and the existence of complexity gaps
 Dep. of
, 1969
"... ABSTRACT. Some consequences of the Blum axioms for step counting functions are investigated. Complexity classes of recursive functions are introduced analogous to the HartmanisStearns classes of recursive sequences. Arbitrarily large "gaps " are shown to occur throughout any complexity h ..."
Abstract

Cited by 27 (0 self)
 Add to MetaCart
ABSTRACT. Some consequences of the Blum axioms for step counting functions are investigated. Complexity classes of recursive functions are introduced analogous to the HartmanisStearns classes of recursive sequences. Arbitrarily large "gaps " are shown to occur throughout any complexity hierarchy. KEY WORDS AND PHRASES: computational complexity, measures ofcomplexity, recursive functions, tape complexity, step counting functions, axiomatic omplexity theory
Theories With SelfApplication and Computational Complexity
 Information and Computation
, 2002
"... Applicative theories form the basis of Feferman's systems of explicit mathematics, which have been introduced in the early seventies. In an applicative universe, all individuals may be thought of as operations, which can freely be applied to each other: selfapplication is meaningful, but n ..."
Abstract

Cited by 12 (9 self)
 Add to MetaCart
Applicative theories form the basis of Feferman's systems of explicit mathematics, which have been introduced in the early seventies. In an applicative universe, all individuals may be thought of as operations, which can freely be applied to each other: selfapplication is meaningful, but not necessarily total. It has turned out that theories with selfapplication provide a natural setting for studying notions of abstract computability, especially from a prooftheoretic perspective.
Relativization of the Theory of Computational Complexity
, 1972
"... Blum's machineindependent treatment of the complexity of partial recursire functions is extended to relative algorithms (as represented by Turing machines with oracles). We prove relativizations of several results of Blum complexity theory, such as the compression theorem. A recursive relatedn ..."
Abstract

Cited by 11 (4 self)
 Add to MetaCart
Blum's machineindependent treatment of the complexity of partial recursire functions is extended to relative algorithms (as represented by Turing machines with oracles). We prove relativizations of several results of Blum complexity theory, such as the compression theorem. A recursive relatedness theorem is proved, showing that any two relative complexity measures are related by a fixed recursive function. This theorem allows us to obtain proofs of results for all measures from proofs for a particular measure.
The Complexity of Real Recursive Functions
 Unconventional Models of Computation (UMC'02), LNCS 2509
, 2002
"... We explore recursion theory on the reals, the analog counterpart of recursive function theory. In recursion theory on the reals, the discrete operations of standard recursion theory are replaced by operations on continuous functions, such as composition and various forms of differential equations. W ..."
Abstract

Cited by 11 (5 self)
 Add to MetaCart
We explore recursion theory on the reals, the analog counterpart of recursive function theory. In recursion theory on the reals, the discrete operations of standard recursion theory are replaced by operations on continuous functions, such as composition and various forms of differential equations. We define classes of real recursive functions, in a manner similar to the classical approach in recursion theory, and we study their complexity. In particular, we prove both upper and lower bounds for several classes of real recursive functions, which lie inside the primitive recursive functions and, therefore, can be characterized in terms of standard computational complexity.
Ranking primitive recursions: The low grzegorczyk classes revisited
 SIAM Journal of Computing
, 1998
"... Abstract. Traditional results in subrecursion theory are integrated with the recent work in “predicative recursion ” by defining a simple ranking ρ of all primitive recursive functions. The hierarchy defined by this ranking coincides with the Grzegorczyk hierarchy at and above the linearspace level. ..."
Abstract

Cited by 11 (1 self)
 Add to MetaCart
Abstract. Traditional results in subrecursion theory are integrated with the recent work in “predicative recursion ” by defining a simple ranking ρ of all primitive recursive functions. The hierarchy defined by this ranking coincides with the Grzegorczyk hierarchy at and above the linearspace level. Thus, the result is like an extension of the Schwichtenberg/Müller theorems. When primitive recursion is replaced by recursion on notation, the same series of classes is obtained except with the polynomial time computable functions at the first level.