Results 1 
3 of
3
The Mathematical Import Of Zermelo's WellOrdering Theorem
 Bull. Symbolic Logic
, 1997
"... this paper, the seminal results of set theory are woven together in terms of a unifying mathematical motif, one whose transmutations serve to illuminate the historical development of the subject. The motif is foreshadowed in Cantor's diagonal proof, and emerges in the interstices of the inclusi ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
(Show Context)
this paper, the seminal results of set theory are woven together in terms of a unifying mathematical motif, one whose transmutations serve to illuminate the historical development of the subject. The motif is foreshadowed in Cantor's diagonal proof, and emerges in the interstices of the inclusion vs. membership distinction, a distinction only clarified at the turn of this century, remarkable though this may seem. Russell runs with this distinction, but is quickly caught on the horns of his wellknown paradox, an early expression of our motif. The motif becomes fully manifest through the study of functions f :
On Modal µCalculus and NonWellFounded Set Theory
"... A finitary characterization for nonwellfounded sets with finite transitive closure is established in terms of modal µcalculus. This result generalizes the standard approach in the literature where a finitary characterization is only provided for wellfounded sets with finite transitive closure ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
A finitary characterization for nonwellfounded sets with finite transitive closure is established in terms of modal µcalculus. This result generalizes the standard approach in the literature where a finitary characterization is only provided for wellfounded sets with finite transitive closure. The proof relies on the concept of automaton, leading then to new interlinks between automata theory and nonwellfounded sets.