Results 1  10
of
65
Deterministic edgepreserving regularization in computed imaging
 IEEE Trans. Image Processing
, 1997
"... Abstract—Many image processing problems are ill posed and must be regularized. Usually, a roughness penalty is imposed on the solution. The difficulty is to avoid the smoothing of edges, which are very important attributes of the image. In this paper, we first give conditions for the design of such ..."
Abstract

Cited by 231 (23 self)
 Add to MetaCart
Abstract—Many image processing problems are ill posed and must be regularized. Usually, a roughness penalty is imposed on the solution. The difficulty is to avoid the smoothing of edges, which are very important attributes of the image. In this paper, we first give conditions for the design of such an edgepreserving regularization. Under these conditions, we show that it is possible to introduce an auxiliary variable whose role is twofold. First, it marks the discontinuities and ensures their preservation from smoothing. Second, it makes the criterion halfquadratic. The optimization is then easier. We propose a deterministic strategy, based on alternate minimizations on the image and the auxiliary variable. This leads to the definition of an original reconstruction algorithm, called ARTUR. Some theoretical properties of ARTUR are discussed. Experimental results illustrate the behavior of the algorithm. These results are shown in the field of tomography, but this method can be applied in a large number of applications in image processing. I.
Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods
 International Journal of Computer Vision
, 2005
"... Abstract. Differential methods belong to the most widely used techniques for optic flow computation in image sequences. They can be classified into local methods such as the Lucas–Kanade technique or Bigün’s structure tensor method, and into global methods such as the Horn/Schunck approach and its e ..."
Abstract

Cited by 141 (12 self)
 Add to MetaCart
Abstract. Differential methods belong to the most widely used techniques for optic flow computation in image sequences. They can be classified into local methods such as the Lucas–Kanade technique or Bigün’s structure tensor method, and into global methods such as the Horn/Schunck approach and its extensions. Often local methods are more robust under noise, while global techniques yield dense flow fields. The goal of this paper is to contribute to a better understanding and the design of novel differential methods in four ways: (i) We juxtapose the role of smoothing/regularisation processes that are required in local and global differential methods for optic flow computation. (ii) This discussion motivates us to describe and evaluate a novel method that combines important advantages of local and global approaches: It yields dense flow fields that are robust against noise. (iii) Spatiotemporal and nonlinear extensions as well as multiresolution frameworks are presented for this hybrid method. (iv) We propose a simple confidence measure for optic flow methods that minimise energy functionals. It allows to sparsify a dense flow field gradually, depending on the reliability required for the resulting flow. Comparisons with experiments from the literature demonstrate the favourable performance of the proposed methods and the confidence measure.
A Variational Method In Image Recovery
 SIAM J. Numer. Anal
, 1997
"... This paper is concerned with a classical denoising and deblurring problem in image recovery. Our approach is based on a variational method. By using the LegendreFenchel transform, we show how the nonquadratic criterion to be minimized can be split into a sequence of halfquadratic problems easier t ..."
Abstract

Cited by 101 (22 self)
 Add to MetaCart
This paper is concerned with a classical denoising and deblurring problem in image recovery. Our approach is based on a variational method. By using the LegendreFenchel transform, we show how the nonquadratic criterion to be minimized can be split into a sequence of halfquadratic problems easier to solve numerically. First we prove an existence and uniqueness result, and then we describe the algorithm for computing the solution and we give a proof of convergence. Finally, we present some experimental results for synthetic and real images.
A Review of Nonlinear Diffusion Filtering
, 1997
"... . This paper gives an overview of scalespace and image enhancement techniques which are based on parabolic partial differential equations in divergence form. In the nonlinear setting this filter class allows to integrate apriori knowledge into the evolution. We sketch basic ideas behind the differ ..."
Abstract

Cited by 79 (7 self)
 Add to MetaCart
. This paper gives an overview of scalespace and image enhancement techniques which are based on parabolic partial differential equations in divergence form. In the nonlinear setting this filter class allows to integrate apriori knowledge into the evolution. We sketch basic ideas behind the different filter models, discuss their theoretical foundations and scalespace properties, discrete aspects, suitable algorithms, generalizations, and applications. 1 Introduction During the last decade nonlinear diffusion filters have become a powerful and wellfounded tool in multiscale image analysis. These models allow to include apriori knowledge into the scalespace evolution, and they lead to an image simplification which simultaneously preserves or even enhances semantically important information such as edges, lines, or flowlike structures. Many papers have appeared proposing different models, investigating their theoretical foundations, and describing interesting applications. For a n...
A Theoretical Framework for Convex Regularizers in PDEBased Computation of Image Motion
, 2000
"... Many differential methods for the recovery of the optic flow field from an image sequence can be expressed in terms of a variational problem where the optic flow minimizes some energy. Typically, these energy functionals consist of two terms: a data term, which requires e.g. that a brightness consta ..."
Abstract

Cited by 76 (20 self)
 Add to MetaCart
Many differential methods for the recovery of the optic flow field from an image sequence can be expressed in terms of a variational problem where the optic flow minimizes some energy. Typically, these energy functionals consist of two terms: a data term, which requires e.g. that a brightness constancy assumption holds, and a regularizer that encourages global or piecewise smoothness of the flow field. In this paper we present a systematic classification of rotation invariant convex regularizers by exploring their connection to diffusion filters for multichannel images. This taxonomy provides a unifying framework for datadriven and flowdriven, isotropic and anisotropic, as well as spatial and spatiotemporal regularizers. While some of these techniques are classic methods from the literature, others are derived here for the first time. We prove that all these methods are wellposed: they posses a unique solution that depends in a continuous way on the initial data. An interesting structural relation between isotropic and anisotropic flowdriven regularizers is identified, and a design criterion is proposed for constructing anisotropic flowdriven regularizers in a simple and direct way from isotropic ones. Its use is illustrated by several examples.
Dense Disparity Map Estimation Respecting Image Discontinuities: A PDE and ScaleSpace Based Approach
 JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION
, 2000
"... We present an energy based approach to estimate a dense disparity map between two images while preserving its discontinuities resulting from image boundaries. We first derive a simplied expression for the disparity that allows us to easily estimate it from a stereo pair of images using an energy min ..."
Abstract

Cited by 59 (8 self)
 Add to MetaCart
We present an energy based approach to estimate a dense disparity map between two images while preserving its discontinuities resulting from image boundaries. We first derive a simplied expression for the disparity that allows us to easily estimate it from a stereo pair of images using an energy minimization approach. We assume that the epipolar geometry is known, and we include this information in the energy model. Discontinuities are preserved by means of a regularization term based on the NagelEnkelmann operator. We investigate the associated EulerLagrange equation of the energy functional, and we approach the solution of the underlying partial differential equation (PDE) using a gradient descent method. In order to reduce the risk to be trapped within some irrelevant local minima during the iterations, we use a focusing strategy based on a linear scalespace. We prove the existence and uniqueness of the underlying parabolic partial differential equation. Experimental results on bot...
ConjugateGradient Preconditioning Methods for ShiftVariant PET Image Reconstruction
 IEEE Tr. Im. Proc
, 2002
"... Gradientbased iterative methods often converge slowly for tomographic image reconstruction and image restoration problems, but can be accelerated by suitable preconditioners. Diagonal preconditioners offer some improvement in convergence rate, but do not incorporate the structure of the Hessian mat ..."
Abstract

Cited by 51 (21 self)
 Add to MetaCart
Gradientbased iterative methods often converge slowly for tomographic image reconstruction and image restoration problems, but can be accelerated by suitable preconditioners. Diagonal preconditioners offer some improvement in convergence rate, but do not incorporate the structure of the Hessian matrices in imaging problems. Circulant preconditioners can provide remarkable acceleration for inverse problems that are approximately shiftinvariant, i.e. for those with approximately blockToeplitz or blockcirculant Hessians. However, in applications with nonuniform noise variance, such as arises from Poisson statistics in emission tomography and in quantumlimited optical imaging, the Hessian of the weighted leastsquares objective function is quite shiftvariant, and circulant preconditioners perform poorly. Additional shiftvariance is caused by edgepreserving regularization methods based on nonquadratic penalty functions. This paper describes new preconditioners that approximate more accurately the Hessian matrices of shiftvariant imaging problems. Compared to diagonal or circulant preconditioning, the new preconditioners lead to significantly faster convergence rates for the unconstrained conjugategradient (CG) iteration. We also propose a new efficient method for the linesearch step required by CG methods. Applications to positron emission tomography (PET) illustrate the method.
A multigrid platform for realtime motion computation with discontinuitypreserving variational methods
 International Journal of Computer Vision
, 2006
"... Abstract. Variational methods are among the most accurate techniques for estimating the optic flow. They yield dense flow fields and can be designed such that they preserve discontinuities, estimate large displacements correctly and perform well under noise and varying illumination. However, such ad ..."
Abstract

Cited by 40 (12 self)
 Add to MetaCart
Abstract. Variational methods are among the most accurate techniques for estimating the optic flow. They yield dense flow fields and can be designed such that they preserve discontinuities, estimate large displacements correctly and perform well under noise and varying illumination. However, such adaptations render the minimisation of the underlying energy functional very expensive in terms of computational costs: Typically one or more large linear or nonlinear equation systems have to be solved in order to obtain the desired solution. Consequently, variational methods are considered to be too slow for realtime performance. In our paper we address this problem in two ways: (i) We present a numerical framework based on bidirectional multigrid methods for accelerating a broad class of variational optic flow methods with different constancy and smoothness assumptions. Thereby, our work focuses particularly on regularisation strategies that preserve discontinuities. (ii) We show by the examples of five classical and two recent variational techniques that realtime performance is possible in all cases—even for very complex optic flow models that offer high accuracy. Experiments show that frame rates up to 63 dense flow fields per second for image sequences of size 160 × 120 can be achieved on a standard PC. Compared to classical iterative methods this constitutes a speedup of two to four orders of magnitude.
Convex halfquadratic criteria and interacting auxiliary variables for image restoration
 IEEE Trans. Image Processing
, 2001
"... © 2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other w ..."
Abstract

Cited by 38 (13 self)
 Add to MetaCart
© 2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. Abstract—This paper deals with convex halfquadratic criteria and associated minimization algorithms for the purpose of image restoration. It brings a number of original elements within a unified mathematical presentation based on convex duality. Firstly, Geman and Yang’s [1] and Geman and Reynolds’s [2] constructions are revisited, with a view to establish convexity properties of the resulting halfquadratic augmented criteria, when the original nonquadratic criterion is already convex. Secondly, a family of convex Gibbsian energies that incorporate interacting auxiliary variables is revealed as a potentially fruitful extension of Geman and Reynolds’s construction. Index Terms—Convex duality, coordinate descent algorithms, edgepreserving restoration, Gibbs–Markov models, line processes. I.
Dense Depth Map Reconstruction: A Minimization and Regularization Approach which Preserves Discontinuities
 Proceedings of the 4th European Conference on Computer Vision
, 1996
"... We present a variational approach to dense stereo reconstruction which combines powerful tools such as regularization and multiscale processing to estimate directly depth from a number of stereo images, while preserving depth discontinuities. The problem is set as a regularization and minimization ..."
Abstract

Cited by 37 (1 self)
 Add to MetaCart
We present a variational approach to dense stereo reconstruction which combines powerful tools such as regularization and multiscale processing to estimate directly depth from a number of stereo images, while preserving depth discontinuities. The problem is set as a regularization and minimization of a nonquadratic functional. The Tikhonov quadratic regularization term usually used to recover smooth solution is replaced by a function of the gradient depth specifically derived to allow depth discontinuities formation in the solution. Conditions to be fulfilled by this specific regularizing term to preserve discontinuities are also presented. To solve this problem in the discrete case, a PDEbased explicit scheme for moving iteratively towards the solution has been developed. This approach presents the additional advantages of not introducing any intermediate representation such as disparity or rectified images: depth is computed directly from the greylevel images and we can also dea...