Results 1 
2 of
2
Reasoning About Functional Programs in Nuprl
 In Functional Programming, Concurrency, Simulation and Automated Reasoning
, 1993
"... . There are two ways of reasoning about functional programs in the constructive type theory of the Nuprl proof development system. Nuprl can be used in a conventional programverification mode, in which functional programs are written in a familiar style and then proven to be correct. It can als ..."
Abstract

Cited by 12 (0 self)
 Add to MetaCart
. There are two ways of reasoning about functional programs in the constructive type theory of the Nuprl proof development system. Nuprl can be used in a conventional programverification mode, in which functional programs are written in a familiar style and then proven to be correct. It can also be used in an extraction mode, where programs are not written explicitly, but instead are extracted from mathematical proofs. Nuprl is the only constructive type theory to support both of these approaches. These approaches are illustrated by applying Nuprl to Boyer and Moore's "majority" algorithm. 1 Introduction A type system for a functional programming language can be syntactic or semantic. In a syntactically typed language, such as SML 1 [25], typing is a property of the syntax of expressions. Only certain combinations of language constructs are designated "welltyped", and only welltyped expressions are given a meaning. Each welltyped expression has a type which can be derive...
Verifying the Unification Algorithm in LCF
 Science of Computer Programming
, 1985
"... Manna and Waldinger's theory of substitutions and unification has been verified using the Cambridge LCF theorem prover. A proof of the monotonicity of substitution is presented in detail, as an example of interaction with LCF. Translating the theory into LCF's domaintheoretic logic is largely st ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
Manna and Waldinger's theory of substitutions and unification has been verified using the Cambridge LCF theorem prover. A proof of the monotonicity of substitution is presented in detail, as an example of interaction with LCF. Translating the theory into LCF's domaintheoretic logic is largely straightforward. Wellfounded induction on a complex ordering is translated into nested structural inductions. Correctness of unification is expressed using predicates for such properties as idempotence and mostgenerality. The verification is presented as a series of lemmas. The LCF proofs are compared with the original ones, and with other approaches. It appears di#cult to find a logic that is both simple and flexible, especially for proving termination.