Results 1 
2 of
2
Constructing Recursion Operators in Intuitionistic Type Theory
 Journal of Symbolic Computation
, 1984
"... MartinLöf's Intuitionistic Theory of Types is becoming popular for formal reasoning about computer programs. To handle recursion schemes other than primitive recursion, a theory of wellfounded relations is presented. Using primitive recursion over higher types, induction and recursion are formally ..."
Abstract

Cited by 22 (5 self)
 Add to MetaCart
MartinLöf's Intuitionistic Theory of Types is becoming popular for formal reasoning about computer programs. To handle recursion schemes other than primitive recursion, a theory of wellfounded relations is presented. Using primitive recursion over higher types, induction and recursion are formally derived for a large class of wellfounded relations. Included are < on natural numbers, and relations formed by inverse images, addition, multiplication, and exponentiation of other relations. The constructions are given in full detail to allow their use in theorem provers for Type Theory, such as Nuprl. The theory is compared with work in the field of ordinal recursion over higher types.
Decidability Extracted: Synthesizing ``CorrectbyConstruction'' Decision Procedures from Constructive Proofs
, 1998
"... The topic of this thesis is the extraction of efficient and readable programs from formal constructive proofs of decidability. The proof methods employed to generate the efficient code are new and result in clean and readable Nuprl extracts for two nontrivial programs. They are based on the use of ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
The topic of this thesis is the extraction of efficient and readable programs from formal constructive proofs of decidability. The proof methods employed to generate the efficient code are new and result in clean and readable Nuprl extracts for two nontrivial programs. They are based on the use of Nuprl's set type and techniques for extracting efficient programs from induction principles. The constructive formal theories required to express the decidability theorems are of independent interest. They formally circumscribe the mathematical knowledge needed to understand the derived algorithms. The formal theories express concepts that are taught at the senior college level. The decidability proofs themselves, depending on this material, are of interest and are presented in some detail. The proof of decidability of classical propositional logic is relative to a semantics based on Kleene's strong threevalued logic. The constructive proof of intuitionistic decidability presented here is the first machine formalization of this proof. The exposition reveals aspects of the Nuprl tactic collection relevant to the creation of readable proofs; clear extracts and efficient code are illustrated in the discussion of the proofs.